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Section 2

a. State-of-the-art and objectives

Introduction

KKKKKKKKKK-theory and TMFTMFTMFTMFTMFTMFTMFTMFTMFTMF : The Atiyah Singer index theorem is a celebrated result that predicts
the number of solutions of certain differential equations.Its authors got the Abel prize
“for their discovery[...] bringing together topology, geometry and analysis, and their out-
standing role in building new bridges between mathematics and theoretical physics”. The
mathematical theory calledK-theory is at the base of this result:
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A recent theory strongly related toK-theory is that of topological modular forms
(TMF ). The latter is a notoriously difficult subject. The existence of TMF was an-
nounced in the nineties, but its construction was so intricate that the foundational papers
[HMi], [HMa] never got finished. For a long time, the only available references were
the background papers [La], [Wi], [Se2], [LRS]. Nevertheless, the results of Hopkins,
Mahowald, and Miller attracted a lot of attention, and many astounding results were an-
nounced [AHS], [Ho], [Be]. Lurie’s novel approach toTMF [Lu1] also allowed for
remarkable applications [BeL].

We expectTMF to have an impact comparable to that ofK-theory and of the index
theorem, but now in the context of loop spaces. Witten’s anomaly computations [Wi] and
the occurrence of modular forms in string theory form strongevidence to that effect:
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In short,TMF should establish a strong link between algebraic topology and analysis on
loop spaces, with same impact as the index theorem.

Overall aim: Unlike K-theory, the current definitions ofTMF are of algebraic nature
[HMi], [Lu1]. Many tried to find a geometric model of that theory [BDR], [HK], [ST1].
But even though progress has been made, none of the attempts were completely success-
ful. Our ultimate goal is to provide such a model:

Main goal: Find the first geometric definition ofTMF
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An attempt towards that goal (probably due to Graeme Segal) would be to defineTMF

to be theDiff (S1)-equivariantK-theory of the loop space:

TMF ∗
(

M
)

:= K∗
Diff (S1)

(

LM
)

.

Unfortunately, that particular variant ofK-theory remains ill-defined.
Our main innovation in order to achieve the above mentioned goal is to use conformal

nets. Initially developed in order to describe quantum fieldtheory in four dimensions,
conformal nets turned up most useful in the context of two dimensional conformal field
theory. In the same way as Clifford algebras are used for defining K-theory, we expect
conformal nets to yield a description ofTMF . More specifically, then-th power of the
free fermion conformal net should correspond to then-th Clifford algebraCliff (n). The
structure in which conformal nets organize, a 3-category, appears to be quite remarkable
by itself. Therefore, we also plan to study conformal nets for their own sake.

Key objectives:

• Finish the description of the tricategory of conformal nets[§1].
• Investigate our new notion of equivalence between conformal nets [§4].
• Prove our conjecture about the equivalence ofFer(n) andFer(n + 576) [§5].
• Compute the action ofν ∈ πstable

3 (S0) on the invertible netFer(1) [§7].

Our most ambitious goal is to find aTMF -analog of the Atiyah Singer index theorem. In
other words:

• Develop a theory of analytic pushforward inTMF cohomology [§12].

To limit the risks associated with this ambitious project, we have added some side-goals,
whose accomplishment are not dependent on the successful completion of other tasks.
Each one of them is suitable for a PhD project:

• Study string connections, and develop Chern-Weil theory for string bundles [§9],
• Define and study conformal blocks for conformal nets [§10],
• Extend Chern-Simons theory down to points [§11].

§1. A 3-category of conformal nets

In [BDH1,2], we plan to show that conformal nets form a 3-category. The existence of
such a 3-category had been conjectured by Stolz and Teichner:

Conjecture. (S. Stolz, P. Teichner)There exists an interesting 3-categoryC such that
HomC(1C, 1C) is equivalent to the 2-category of von Neumann algebras and bimodules.
Here,C is assumed to be symmetric monoidal, with unit object1C.

Their hope was that a good answer to that question would help them complete their
project, and provide a field theoretical definition ofTMF [ST1]. The 3-categorical nature
of conformal nets (and thus of conformal field theories) is anextremely interesting feature
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and its applications will certainly reach beyondTMF . So far, it appears to have escaped
the attention of physicists. We borrow terminology from conformal field theory to name
the objects, arrows, 2-morphisms and 3-morphisms of our 3-category:

The 3-categoryCN3

Objects Conformal nets

ArrowsA → B Defects between the netsA andB

Arrows fromA to the unit object 1 Boundary conditions for the netA

2-morphisms between arrowsA B Sectors betweenA-B-defects

2-morphisms from1A :A → A to itself Sectors of the netA

3-morphisms between 2-morphisms Homomorphisms of sectors

There are many formalisms for doing conformal field theory aside from conformal nets:
vertex algebras [FBZ], chiral algebras [BD], algebras over(partial) operads [Se1], [Hu],
etc.

Some authors have already considered 2-categories as an appropriate framework for
studying conformal field theories [FRS]. But we would like toemphasize that replacing
2-categories by 3-categories is much more than a change of terminology. To our knowl-
edge, the only formalism that exhibits this 3-categorical nature is that of conformal nets.
Exporting our ideas to other areas of conformal field theory could be very exciting and
will be the subject of future research projects.

The definition. For people who haven’t heard of conformal nets, we include a definition.
We refer the reader to [Ka] for a short survey article, and to [Lon] for a more extensive
treatment. Here,H denotes a Hilbert space, andB(H) its algebra of bounded operators.

Definition. A conformal netA consists of a Hilbert spaceH, a projective
representationu of Diff (S1) onH, a vectorΩ ∈ H, and an assignment

A :
{

subintervals ofS1
}

−→
{

subalgebras ofB(H)
}

.

These are subject to the following axioms:
- TheA(I) are von Neumann algebras, i.e. closed in the weak topology.
- If I ⊂ J , thenA(I) ⊂ A(J).
- If I is the complement ofJ , thenA(I) is the commutant ofA(J).
- The algebrasA(I) generateB(H).
- The representation ofDiff (S1) onH is of positive energy.
- Ω is invariant under the action ofSL2(R) ⊂ Diff (S1).
- Givenϕ ∈ Diff (S1), then one hasu(ϕ)A(I)u(ϕ)−1 = A(ϕ(I)).
- If ϕ fixesI pointwise, thenAd(u(ϕ)) fixesA(I) pointwise.
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§2. A “coordinate free” approach to conformal nets

In its usual definitions [GF], [Ka], [Lon], a conformal net isgiven by a Hilbert space H,
and an assignment

A :
{

subintervals ofS1
}

−→
{

subalgebras ofB(H)
}

.

But in order to define the tricategoryCN3 of conformal nets, we find it is useful to take
a more coordinate free point of view. Such an approach was already suggested in the
context of quantum field theory on curved 4-dimensional space time [BFV].

Here, by ‘coordinate free’, we mean that instead of concentrating on subintervals of
S1, one should takeA to be a functor defined on the following larger category:

Alternative definition (Sketch)A conformal net is a functor

A :
{

1-manifolds
}

−→
{

von Neumann algebras
}

from the category of all compact one dimensional manifolds (possibly with boundary) and
embeddings to the category of all von Neumann algebras, subject to certain axioms.

Note that the Hilbert spaceH and the chosen vectorΩ have now disappeared from the
definition. We know that a conformal net (as defined in [§1]) induces a coordinate free
conformal net (as defined above). However, we still wonder under which circumstances
the converse can be made to hold.

§3. A close analogy betweenK-theory and TMF

Both in the homotopy theoretical approach [HMi] and in the field theoretic approach
[ST1], there is a strong parallel between realK-theory (KO) and ofTMF . Therefore, we
also expect such an analogy in our analytic context.

One of the most important ingredient in the definition of analytic KO-theory is pro-
vided by the Clifford algebrasCliff (n). Finding the analogs of Clifford algebras forTMF

was a long outstanding question to which we claim to have an answer: the free fermion
conformal netFer(n). Physically, the free fermion describesn massless particles with
no interaction. The associated chiral conformal field theory is undoubtedly among the
simplest ones, and the same holds for the corresponding conformal net. Nevertheless,
the free fermion has a lot of very interesting mathematical properties, almost identical to
those of Clifford algebras:

Clifford algebraCliff (n) The free fermionFer(n)

Cliff (n) has an action ofO(n) Fer(n) has an action ofO(n)

Cliff is a multiplicative functor: Fer is a multiplicative functor:

Cliff (V ⊕W ) = Cliff (V )⊗ Cliff (W ) Fer(V ⊕W ) = Fer(V )⊗ Fer(W )

Cliff (n) can be used to defineSpin(n) Fer(n) can be used to defineString(n)
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The use of Clifford algebras in the definition of realK-theory goes as follows:
Roughly speaking, a class inKOn(X) is represented by a bundle ofCliff (n)-modules

over X. Those modules can be viewed as the elements ofHom(Cliff (n), 1) in an ap-
propriate 2-category. It is therefore natural to try to replace them with elements of
Hom(Fer(n), 1) in the tricategoryCN3 of conformal nets. These are the boundary con-
ditions forFer(n). So we can now present our first tentative definition ofTMF :

Cohomology theory KO∗ TMF ∗

The cohomological
degree is controlled by

The Clifford algebras
Cliff (n)

The Free Fermion
conformal netsFer(n)

Cohomology classes
of degreen are represented by

Bundles of
Cliff (n)-modules

Bundles of
Fer(n)-boundary conditions

Of course, saying thatKO∗(X) is given by bundles ofCliff (n)-modules is only a cari-
cature. The actual definition involves actions ofCliff (n) on bundles of Hilbert spaces,
and fiberwise Fredholm operators. On theTMF side of the story, we expect that similar
modifications will be needed. What these modifiations shouldbe is still something that
needs to be determined. But the work of Stolz and Teichner [ST2] contains rather clear
indications (having to do with moduli of supersurfaces) about the direction one should be
looking in.

Defects and boundary conditions are well established in theCFT literature. They
have been studied in many contexts (e.g. [FRS]) and, among others, in the context of
conformal nets in 1+1 dimensions [LR]. We would like to emphasize that, so far, they have
never been considered forchiral conformal field theories (our free fermionsFer(n) are
chiral). We have thus introduced a novel, mathematically precise, definition of boundary
condition, whose properties we are currently working on.

§4. A new notion of equivalence for conformal field theories

Given two ringsA andB, there exist two distinct notions of equivalence: ring isomor-
phism and Morita equivalence. This comes from the fact that there are two different ways
of making rings into a category. If we viewA andB as objects of the category of rings and
ring homomorphisms, we get the notion of ring isomorphism. On the other hand, viewing
A andB as objects of the 2-category of rings, bimodules, and bimodule homomorphisms,
we get the notion of Morita equivalence.

Similarly, the fact that conformal nets form the objects of a3-category yields a new
notion of equivalence. We call itCN3 -equivalence. We present some evidence that this
notion is worth wile studying. First of all, we know that if two netsA andB have dif-
ferent representation categories, then they cannot beCN3 -equivalent: this shows that the
notion ofCN3 -equivalence is at least non-trivial. On the other hand, thenotion ofCN3 -
equivalence is strictly weaker that the notion of isomorphism. Here is a concrete example
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of something that we plan to prove:

Claim. If a conformal netA has a trivial representation category, then there exists an
other conformal netB such that their tensor productA⊗B is CN3 -equivalent to the unit
object ofCN3 .

The above claim can be reformulated by saying that the conformal netA is invertible,
with inverseB. In the celebrated paper [KLM], it was shown that a conformalnetA has
trivial representation category if and only if a certain numerical invariantµ(A) is equal to
one – the so calledµ-index ofA. Thus, we could rephrase the above claim by saying that
a conformal netA is invertible if and only if itsµ-index is equal to one. We also believe
that the following is true:

Claim. If two conformal netsA andB areCN3 -equivalent, thenµ(A) = µ(B).

Finding other invariants that can distinguish non-CN3 -equivalent conformal nets with
same representation category and sameµ-index is a central problem on which we hope to
concentrate our efforts.

At this moment, it is still difficult for us to establish that two conformal nets areCN3 -
equivalent. Here are some open questions:

Conjecture. Let L1, L2 be even unimodular lattices of same rank, and letAL1
, AL2

be the corresponding conformal nets [Stas]. ThenAL1
andAL2

areCN3 -equivalent.

We would also like to know if the moonshine net (on which the monster group acts [KL])
is CN3 -equivalent to the one associated to a unimodular lattice ofrank 24.

§5. Periodicity of the free fermions

Clifford algebras over the reals exhibit an 8-fold periodicity that is intimately related to
the Bott periodicity ofKO-theory. Namely, there exist Morita equivalences

Cliff (n) ≃ Cliff (n + 8)

for every natural numbern. We expect the relationship between the free fermion net
Fer(n) andTMF to be analogous to the relationship betweenCliff (n) andKO . Since
the cohomology theoryTMF is 576-periodic [HMa], [Ba], it is natural for us to make the
following conjecture:

Conjecture. For everyn, there exists aCN3 -equivalence between the conformal nets
Fer(n) andFer(n + 576).

This conjecture is quite mysterious, even from the point of view of physics. The
theoretical physicists to which we showed the conjecture had no idea of where the num-
ber576 should come from. If true, this conjecture would be a rare instance of a situation
where mathematicians tell theoretical physicists something that they didn’t already know.
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§6. Symmetric monoidal 3-categories

One major difficulty in answering Stolz and Teichner’s question is that the very notion
of symmetric monoidal 3-category has never been described in its entirety. The existing
definition of 3-category [GPS] is already quite bulky, and adding the words ‘symmetric
monoidal’ only makes things worse. Very probably, the situation is about to change with
the groundbreaking work of Jacob Lurie [Lu2]. But even like this, checking thatCN3

satisfies all the axioms appears to be very difficult.
So instead of working with fully weak symmetric monoidal 3-categories, we have

decided to describe the structureCN3 best fits in. It is a notion of symmetric monoidal 3-
category in which some of the coherences are made strict, analogous to Shulman’s framed
bicategories [Shu]. That notion will be the main subject of our paper [BDH1].

One further goal, which could be a collaboration with P. Teichner’s team in Bonn, is to
finish the project started in [ST1], and useCN3 to constructTMF . But for that purpose,
we would also need to understand fully weak symmetric monoidal 3-functors, a notion
that we have not developed yet. Our current plan is to establish a comparison theorem
that would connect our notion to the one sketched in [Lu2].

§7. The free fermion and the 3rd stable homotopy group of the sphere

Given a symmetric monoidal 3-categoryC, an objectA is called invertible if there exists
another objectB, such thatA ⊗ B is equivalent to the unit object1 ∈ C. Let us denote
by C× the groupoid of invertible objects, invertible arrows, invertible 2-morphisms, and
invertible 3-morphisms ofC. That groupoid being equipped with a symmetric monoidal
tensor product, we expect its geometric realization|C×| to have the structure of a spec-
trum (in the sense of stable homotopy theory). The homotopy groups of that spectrum
should then be given by:

π0

(

|C×|
)

= equivalence classes of invertible objects ofC,

π1

(

|C×|
)

= equivalence classes of invertible arrows from 1 to itself,

π2

(

|C×|
)

= equiv. classes of invertible 2-morphisms from the trivial arrow to itself,

π3

(

|C×|
)

= invertible 3-morphisms from the trivial 2-morphism to itself,

πn

(

|C×|
)

= 0 for n ≥ 4.

Let S be the sphere spectrum, and recall that any spectrum is anS-module. The homo-
topy groups of|C×| are thus a module overπ∗(S), the ring of stable homotopy groups of
spheres. The most interesting structure that this action provides is a map

ν : π0

(

|C×|
)

−→ π3

(

|C×|
)

,

given by the action of the generatorν of π3(S) = Z/24.
Let us now specialize to the caseC = CN3 . By chance, it turns out that the third
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homotopy group of|CN3×| is easy to describe, namely,π3(|CN3×|) = S1. So we get a
map

ν :
{

Invertible conformal nets
}

→ S1.

Moreover, since the classν has order 24 in the abelian groupπ3(S) = Z/24, the above
map necessarily lands in the set of24th roots of unity.

One test of whetherCN3 is a good answer to Stolz and Teichner’s question is whether
it contains enough interesting invertible objects. More precisely, whether there exists an
invertible netA such thatν(A) is a primitive24th roots of unity. We believe that the free
fermion netFer(1) satisfies that condition.

Claim. The image ofFer(1) under the mapν is a primitive24th root of unity.

At this moment, we certainly don’t know which primitive rootof unity ν
(

Fer(1)
)

is.
To answer that question, one would need to better understandthe geometry of the free
fermions, and how they behave in bundles.

§8. Geometric string structures

As our first concrete application of the free fermions, we plan to construct an explicit,
geometric model of the String group [DH].

Recall that the String groupString(n) is the 3-connected cover ofO(n). More gen-
erally, starting from the orthogonal groupO(n), one encounters the following groups by
inductively killing their lowest homotopy group:

O(n) ←−
↑

kill π0

SO(n) ←−
↑

kill π1

Spin(n) ←−
↑

kill π3

String(n).

The first three are Lie groups while the last one is a topological group, well defined up
to homotopy. The String group can been realized in many different ways, and various
models have already appeared in the literature [ST1], [BCSS]. But rather than studying
the topological groups, it is better to focus on the corresponding structures on manifolds:
orientability, spin structures, and string structures.

These structures on manifolds play important roles for the homology theoriesH(-, R),
KO , andTMF respectively. Namely, whereas all manifolds have a fundamental class in
mod-two homology, only those which are oriented have a fundamental class inH(-, R).
Similarly, only the manifolds that are spin have fundamental classes inKO, and only
the manifolds that are string have fundamental classes inTMF [AHR]. Thus, given the
intimate connection between string structures andTMF , it is important to have a good
geometric understanding of the former.

As mentioned above, the groupString(n) has already been constructed in many dif-
ferent ways. But finding a notion of string structure that is suitable for doing analysis
remains a non-trivial task. Before explaining our proposedanswer, we recall some back-
ground on spin structures.

If V is ann dimensional vector space equipped with an inner product, then one can
consider its Clifford algebraCliff (V ). A good geometric model for a spin structure onV
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is then provided by the choice of an invertibleCliff (V )-Cliff (n) bimodule i.e., a Morita
equivalence between those algebras. Similarly, we expect astring structure onV to be
encoded by an invertibleFer(V )-Fer(n) defect, namely, aCN3 -equivalence between
Fer(V ) andFer(n). Showing that this is indeed the case is the goal of our paper [DH].

§9. Connections on string bundles

The analytic construction of pushforwards inKO-theory makes crucial use of connec-
tions on spin bundles. To construct an analytic pushforwardin TMF -theory, one there-
fore expects connections on string bundles to be necessary.

One of the existing models of the string group is a Lie 2-group[BCSS]. This is a
2-categorical analog of a Lie group. Vector bundles with string structures therefore also
inherit this 2-categorical feature. For example, one can describe a string bundle as a pair
(P,G) whereP is aSpin(n) principal bundle, andG is a gerbe onP . Using the above for-
malism, Waldorf introduced a satisfactory notion of connection on string bundles [Wal].
However, Waldorf’s notion is specific to the 2-group model ofthe string group. Adapt-
ing his ideas to the notion of string structure defined in [DH]should be an interesting
and non-trivial task. This would require combining the theory of von Neumann algebras
(which are the building blocks of conformal nets) with differential geometry, two subjects
that don’t look very compatible, at least at first glance.

As a further step, we could hope to develop Chern-Weil theoryfor string bundles, and
connect it to the 2-Lie algebra [BC] [He] associated to the string group.

§10. Conformal blocks for conformal nets

Quoting [KL], there are “two mathematically rigorous approaches to study chiral confor-
mal field theory using infinite dimensional algebraic systems. One is algebraic quantum
field theory where we study[conformal nets], and the other is theory of vertex operator
algebras”. Given a vertex algebra, one gets bundles of conformal blocks over the moduli
spaces of Riemann surfaces [FBZ]. But a similar construction for conformal nets is miss-
ing at the moment. As an application of our coordinate free approach to conformal nets,
we present a sketch of definition for the conformal blocks.

Given a Riemann surface, one first picks a cellular decomposition. The edges being
1-manifolds, one can apply the functorA to them. So to each edgee, one can associate a
von Neumann algebraA(e). To every faceF one then associates a Hilbert spaceHF . If
e is an edge betweenF andF ′, there are left and right actions of the algebraA(e) onHF

andHF ′. It therefore makes sense to take the Connes fusion ofHF ⊠A(e) HF ′. The space
of conformal blocks should then be the “total fusion” of all the Hilbert spacesHF over all
the algebrasA(e).

Unfortunately, the definition of Connes fusion is technical, and it is not obvious how
to define the total Connes fusion. We are confident that this approach can be made to
work.
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§11. Extending Chern-Simons down to points

Let G be a compact Lie group. In its current formulation [Tu], quantum Chern-Simons
theory forG is a 1+1+1 dimensional topological field theory. In other words, it assigns al-
gebraic objects to closed one-dimensional manifolds, to two-dimensional manifolds with
boundary, and to three-manifolds with corners of codimension two. Refining the defini-
tion to a 0+1+1+1 dimensional theory is an interesting and difficult problem. Roughly
speaking, it would require having algebraic objects associated to points, intervals, sur-
faces with corners, and to 3-manifolds with codimension 3 corners. Until recently [Fr],
the guess was that the 0+1+1+1 dimensional version of Chern-Simons theory would look
roughly as follows:

0-manifolds 7→ C-linear 2-categories

1-manifolds 7→ C-linear categories

2-manifolds 7→ vector spaces

3-manifolds 7→ numbers

In other words, it should be a functorBord3 → 2CatC, from the 3-categoryBord3 of
zero-, one-, two-, and three-dimensional manifolds (with appropriate extra structure) into
the 3-category2CatC of C-linear 2-categories.

In their recent preprint [FHLT], Freed, Hopkins, Lurie, Teleman have made signifi-
cant progress. They replaced2CatC with another 3-category, whose objects are tensor
categories equipped with extra structure (a central actionof a braided category). By using
the main result of [Lu2], they could then extend Chern Simonstheory down to points in
the special case whenG is a torus.

But if G is non-abelian, the 3-category used in [FHLT] doesn’t seem to be power-
ful enough. CN3 however, seems perfectly suited for the problem. Namely, applying
the result of [Lu2] to the loop group conformal nets of [Was] and [GF] gives us for free
a 0+1+1+1 dimensional topological field theory. In other words, it provides a functor
Bord3 → CN3 , from the 3-categoryBord3 of framed 0-, 1-, 2-, and 3-manifolds into the
3-categoryCN3 of conformal nets:

0-manifolds 7→ conformal nets

closed 1-manifolds 7→ von Neumann algebras

1-manifolds with∂in and∂out 7→ defects between conformal nets

closed 2-manifolds 7→ Hilbert spaces

2-manifolds with∂in and∂out 7→ bimodules over vN algebras

2-manifolds with corners 7→ 2-morphisms in the tricategoryCN3

closed 3-manifolds 7→ complex numbers

3-manifolds with∂in and∂out 7→ maps between Hilbert spaces

3-manifolds with codim 2 corners 7→ maps between bimodules

3-manifolds with codim 3 corners 7→ 3-morphisms in the tricategoryCN3

The remaining non-trivial question is to identify the abovewith Chern-Simons theory.
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§12. Pushforward along fibrations inTMF cohomology

This subject is by far the most ambitious of all our goals.
We use the analogy withKO-theory do describe the situation that we expect to find.

Given a mapf : N → M between spin manifolds, there are two cases in which one can
define a pushforward inKO-theory:a) If f is an immersion, andb) if f is a submersion.
In the first case, the construction is geometric and doesn’t require to leave the realm of fi-
nite dimensional vector bundles. On the other hand, the construction of pushforwards for
submersions uses fiberwise Dirac operators, and is thus of analytic nature. The compati-
bility between those two pushforwards is then given by the family version of the Atiyah
Singer index theorem.

Similarly to the case ofKO, we expectTMF -pushforwards along immersions to be
much simpler than pushforwards along fibrations. The lattershould be somehow related
to taking theDiff (S1)-equivariant Dirac operator of the fiberwise free loop space[Stac].
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b. Methodology

In the very beginning of the project, I will continue my projects with C. Douglas and A.
Bartels, and finish [BDH1,2] and [DH]. These will form the basis on which other people
will do their work. I then plan to hire three students and one postdoc, as shown on the
following timetable:

Ph.D. student� -

Ph.D. student� -

Ph.D. student� -

Postdoc� -

Finish and publish
[DH] & [BDH1,2]

?
Year 1 Year 2 Year 3 Year 4 Year 5

The big diagram below displays our various intermediate goals and their interdepen-
dences. The boxed items represent our various objectives, listed hierarchically, while
an arrow indicates the logical dependence of one project on another one. The central box
states our main objective: to develop a geometric definitionof TMF using our notion of
defect between conformal nets [§3]:

Formulate a geometric
definition ofTMF

Determine the periodicity
of the free fermions

Compute the action
of π3(S) onFer(1)

Investigate the notion
of CN3 -equivalence

Finish the proof
thatCN3 is a 3-category

Extend Chern-Simons
theory down to points

“Coordinate free”
approach to conformal nets

Notion of symmetric
monoidal 3-category

Define conformal blocks
for conformal netsNotion of defect

between conformal nets

Geometric notion of
string structures

via conformal nets

Connections
on string bundles

Do Chern-Weil theory
for string bundles

Define an analytic pushforward
in TMF -cohomology
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Let us emphasize that, even though they are not published yet, the notions of symmetric
monoidal 3-category [§6], of defect between conformal nets [§1], and the coordinate free
approach to conformal nets [§2] have been established by us, and constitute a solid ground
for further investigations. The first two are posted on my webpage [DH], while the third
should appear very soon in [BDH1].

c. Resources

In total, I would like to hire one postdoc and three PhD students. The postdoc should be
well acquainted with conformal nets, and, for example, could help investigate the notion
of CN3 -equivalence [§4].

For the three PhD students, I have defined some side-goals whose accomplishment
is not dependent on the completion of other intermediate projects: Chern-Weil theory
for connections on string bundles [§9], higher genus conformal blocks for conformal
net [§10], and extendend Chern-Simons theory [§11]. These should be suitable as PhD
projects: they are not too difficult, but will nevertheless constitute very nice results on
their own.

Here is an estimation of the overall costs of this proposal:

COST CATEGORY Year 1 Year 2 Year 3 Year 4 Year 5 Total

P E R S O N N E L

PI: A. Henriques(1,0 fte) 67373 70690 74103 77612 81087 370866
Post doc 27797 57770 60956 31558 178080
PhD student 34034 40448 43195 46147 163824
PhD student 17017 37241 41821 44671 23509 164259
PhD student 36241 43050 45962 49085 174339
Total Personnel 146221 242390 263126 245950 153681 1051368

O T H E R D I R E C T C O S T S

Comput., software, books 5000 2500 1500 1500 1500 12000
Travel(2500 pp per year) 7500 15000 15000 13750 6250 57500
International guests 5000 5000 5000 5000 5000 25000
Costs of audit certificate 2500 2500 5000
Total Other Direct Costs 17500 22500 24000 20250 15250 99500
Total Direct Costs 163721 264890 287126 266200 168931 1150868

Indirect Costs(overheads) 32744 52978 57425 53240 33786 230174
Total costs of project 196465 317868 344552 319440 202717 1381042
Requested grant: 196465 317868 344552 319440 202717 1381042
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d. Ethical issues

None. (ethical issues table on p. 13)
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Section 3

PI’s Host institution.

The research described in this proposal will be carried out at the University of Utrecht. It
is the leading university of the Netherlands, and its math department comprises more than
80 staff members (professors, post docs, and PhD students),across all areas of mathemat-
ics.

It should provide fertile ground for this project and we haveno doubt about its ability
to attract bright PhD students and highly qualified post docs. Moreover, the topic of this
proposal overlaps with the interests of many Utrecht professors:

• The subject ofK-theory [§3] is well represented in Utrecht. W. van der Kallen, J.
Stienstra, and J. Strooker have written many articles of thesubject ([KS], [KMS], [Str],
[SV] to cite just a few).
•Categorical structures is among the specialties of I. Moerdijk [BM] and he has shown

much interest for our notion of symmetric monoidal tricategory [§6].
• The string group [§8] was the main motivation for my paper onL∞-algebras, which

was a direct continuation of M. Crainic’s work on Lie algebroids [CF].
• E. Looijenga has spent time investigating the properties ofconformal blocks [Loo].

A definition of conformal blocks via conformal nets [§10] would nicely complement the
work of his Ph.D. student [BoL].
• G. Cornelissen is a number theorist who is well acquainted with modular forms and

related mathematical objects [CL], [C].
• U. Schreiber is a recently hired post doc who did extensive work on the applications

of higher categorical structures in theoretical physics: [SSW], [Sch], [BCSS], [BS].
• Finally, the UU also has a strong physics department, with numerous mathematical

physicists. This could be crucial for the good development of our project given its in-
terdisciplinary nature. One physicist who I might expect toget involved is S. Vandoren,
whose research is on superstring theory, supergravity and supersymmetric field theory.

[BCSS] Baez, J.; Crans, A. S.; Stevenson, D.; Schreiber, U.From loop groups to 2-groups
Homotopy, Homology and Applications, 9, 2007, 101–135.
[BS] Baez, J.; Schreiber, U.Higher gauge theory. Categories in algebra, geometry and
mathematical physics, Contemp. Math., 431, 2007, 7–30.
[BM] Berger, C.; Moerdijk, I.On the derived category of an algebra over an operad
preprint 2008, arXiv:0801.2664.
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schemes and applications(Alden-Biesen, 1996), 167–187, World Sci. Publ., 1997.
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J. Number Theory 129, 2009, no. 6, 1456–1463.
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