RATIONAL CHIRAL SEGAL CFT:

- (1.a) For every closed 1-manifold S, a linear category $\mathcal{C}(S)$ isomorphic to $\mathsf{Vec}_{\mathrm{fd}}^{\oplus r}$ for some $r \in \mathbb{N}$. The assignment $S \mapsto \mathcal{C}(S)$ is symmetric monoidal with respect to disjoint union of 1-manifolds, and tensor product of linear categories.
- (1.b) For every closed 1-manifold S, a faithful functor U: $\mathcal{C}(S) \to \mathsf{TopVec}$. The assignment $S \mapsto U$ is a symmetric monoidal transformation from $S \mapsto \mathcal{C}(S)$ to the constant 2-functor $S \mapsto \mathsf{TopVec}$.
- (2.a) For every complex cobordism Σ , a linear functor F_{Σ} : $\mathcal{C}(\partial_{in}\Sigma) \rightarrow \mathcal{C}(\partial_{out}\Sigma)$. These functors are compatible with the operations of disjoint union, identity cobordisms, and composition of cobordisms.
- (2.b) For every complex cobordism Σ , and every object $\lambda \in C(\partial_{in}\Sigma)$, a linear map $Z_{\Sigma} : U(\lambda) \to U(F_{\Sigma}(\lambda))$. The maps Z_{Σ} are compatible with the operations of disjoint union, identity cobordisms, and composition of cobordisms.

 $\begin{cases} \text{A central ext. } 0 \to \mathbb{C}^{\times} \times \mathbb{Z} \to \tilde{\operatorname{Ann}}(S) \to \operatorname{Ann}(S) \to 0 \\ \text{of the semigroup of annuli with } \partial \text{ parametrized by } S. \\ \text{The extension depends on the central charge } c \in \mathbb{Q}. \end{cases}$

- (3.a) For every $\tilde{A} \in \tilde{Ann}(\check{S})$, a trivialization $T_{\tilde{A}} : F_A \to id_{\mathcal{C}(S)}$. The $T_{\tilde{A}}$ are compatible with identities and composition, and the central \mathbb{C}^{\times} acts in a standard way.
- (3.b) For every $\lambda \in \mathcal{C}(S)$, the map which sends \tilde{A} to the composite $U(T_{\tilde{A}}) \circ Z_A : U(V) \to U(F_A(V)) \to U(V)$ is continuous on Ann(S) and holomorphic on its interior.

For C a \dagger -category and Δ an \mathbb{R}_+ -torsor, we let $C\langle\Delta\rangle := C \otimes \mathsf{Hilb}_{\mathrm{fd}}\langle\Delta\rangle$, where Hilb $\langle\Delta\rangle$ is the \dagger -category of "Hilbert spaces" with $\mathbb{C}\langle\Delta\rangle$ -valued inner products, and $\mathbb{C}\langle\Delta\rangle := \mathbb{C} \times_{\mathbb{R}_+} \Delta$. All the $C\langle\Delta\rangle$ have the same underlying category C^{\natural} . UNITARY RATIONAL CHIRAL SEGAL CFT:

(1.a) For every closed 1-manifold S, a \dagger -category $\mathcal{C}(S)$ isomorphic to $\mathsf{Hilb}_{\mathsf{fd}}^{\oplus r}$ for some $r \in \mathbb{N}$. The assignment $S \mapsto \mathcal{C}(S)$ is symmetric monoidal. (1.b) For every closed 1-manifold S, a faithful \dagger -functor $U: \mathcal{C}(S) \to \mathsf{Hilb}$. The map $S \mapsto U$ is a symmetric monoidal nat. transformation. Δ_{Σ} is a certain \mathbb{R}_+ -torsor canonically associated to Σ . which depends on $c \in \mathbb{Q}_+$. (2.a) For every Σ , a \dagger -functor $F_{\Sigma} : \mathcal{C}(\partial_{\mathrm{in}}\Sigma) \to \mathcal{C}(\partial_{\mathrm{out}}\Sigma) \langle \dot{\Delta}_{\Sigma} \rangle$ These functors are compatible with disjoint union, identities, and composition. (2.b) For every Σ and $\lambda \in \mathcal{C}(\partial_{in}\Sigma)$, a map $Z_{\Sigma} : U(\lambda) \to$ $U(F_{\Sigma}(\lambda))$, compatible with disjoint union, identities, and composition. For $A \in Ann(S)$, a lift to $\tilde{A} \in \tilde{Ann}(S)$ induces a trivialization of Δ_A . (3.a) For every $\tilde{A} \in \tilde{\operatorname{Ann}}(S)$, a trivialization $T_{\tilde{A}}: F_A \to \operatorname{id}_{\mathcal{C}(S)}$ whose components are unitary. Compatibility with identities and composition. \mathbb{C}^{\times} acts in a standard way. (3.b) For $\lambda \in \mathcal{C}(S)$, the map which sends \tilde{A} to the composite $U(T_{\tilde{A}}) \circ Z_A : U(V) \to U(V)$ is strong-continuous on Ann(S), and norm-holomorphic in its interior. (4.a) Involutive antilinear natural isomorphisms $f \mapsto f^{\#}$: $\operatorname{Hom}_{\mathcal{C}^{\sharp}(\partial_{\operatorname{cut}}\Sigma)}(F_{\Sigma}(\lambda),\mu) \to \operatorname{Hom}_{\mathcal{C}^{\sharp}(\partial_{\operatorname{cut}}\Sigma)}(F_{\overline{\Sigma}}(\mu),\lambda)$ compatible with disjoint union, id'ties, and composition. (4.b) The maps $U(f) \circ Z_{\Sigma} : U(\lambda) \to U(F_{\Sigma}(\lambda)) \to U(\mu)$ and $U(f^{\#}) \circ Z_{\overline{\Sigma}} : U(\mu) \to U(F_{\overline{\Sigma}}(\mu)) \to U(\lambda)$ are adjoints. (5.a) The counit $(\mathrm{id}_{F_{\mathbb{D}^2}(\mathbb{C})})^{\#} : F_{S^2}(\mathbb{C}) \to \mathbb{C}$ is unitary. (5.b) The vacuum vector $Z_{D^2}(1) \in F_{D^2}(\mathbb{C})$ has norm one.