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The string group String(n) is the 3-connected cover of Spin(n). Given and
compact simply connected group G, we will let StringG be its 3-connected cover.
The group StringG is only defined up to homotopy, and various models have
appeared in the literature. Stephan Stolz and Peter Teichner [7], [6] have a
couple of models of StringG, one of which, inspired by Anthony Wassermann, is
an extension of G by the group of projective unitary operators in a particular
Von-Neuman algebra. Jean-Luc Brylinski [4] has a model which is a U(1)-gerbe
with connection over the group G. More recently, John Baez et al [2] came up
with a model of StringG in their quest for a 2-Lie group integrating a given 2-Lie
algebra. We show how to produce their model by applying a certain canonical
procedure to their 2-Lie algebra.

A 2-Lie algebra is a two step L∞-algebra. It consists of two vector spaces
V0 and V1, and three brackets [ ], [ , ], [ , , ] acting on V := V0 ⊕ V1. They are
of degree -1, 0, and 1 respectively and satisfy various axioms, see [1] for more
details.

A 2-group is a group object in a 2-category [3]. It has a multiplication
µ : G2 → G, and an associator α : µ ◦ (µ × 1) ≃ µ ◦ (1 × µ) satisfying the
pentagon axiom. There are strict and weak versions. If the 2-category is that
of C∞ Artin stacks, we get the notion of a 2-Lie group. Since Artin stacks
are represented by Lie groupoids, we can think of (strict) 2-Lie group as group
objects in Lie groupoids. Equivalently, these are crossed modules in the category
of smooth manifolds [3].

It is also good to consider weak 2-groups. The classifying space of a weak
2-group contains (up to homotopy) the same amount of information as the 2-
group itself. So we will replace 2-Lie groups with their classifying space. This
also allows for an easy way to talk about n-Lie groups. The following definition
was inspired by discussions with Jacob Lurie:

Definition 1 The classifying space of a weak n-Lie group is a simplicial man-
ifold

X• =
(

X0←← X1 ←←
←

X2 · · ·
)

satisfying X0 = pt, and the following version of the Kan condition:
Let Λm,j ⊂ ∂∆m be the jth horn. Then the restriction map

Xm = Hom(∆m, X•)→ Hom(Λm,j , X•) (1)
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is a surjective fibration for all m ≤ n and a diffeomorphism for all m > n.

Given an n-Lie algebra, there exists a canonical procedure that produces the
classifying space of an n-Lie group. The main idea goes back to Sullivan’s work
on rationnal homotopy theory [8]. A variant is further studied in [5].

Definition 2 Let V be an n-Lie algebra with Chevaley-Eilenberg complex C∗(V ).
The classifying space of the corresponding n-Lie group is then given by

(
R

nV
)

m
:= HomDGA

(

C∗(V ), Ω∗(∆m)
)/

∼, (2)

where ∼ identifies two m-simplicies if they are simplicially homotopic relatively
to their (n− 1)-skeleton.

Example 1 Let g be a Lie algebra with corresponding Lie group G. A homo-
morphism from C∗(g) to Ω∗(∆n) is the same thing as a flat connection on the
trivial G-bundle G × ∆n. These in turn correspond to maps ∆n → G mod-
ulo translation. Two n-simplicies are simplicially homotopic relatively to their
0-skeleton if their vertices agree. So we get

(
R

1g)n = Map
(

sk0(∆
n), G

)

/G = Gn.

Therefore
R

1g is the standard simplicial model for BG. We can recover G along
with its group structure by taking the simplicial π1 of this simplicial manifold.

Now let us consider our motivating example. Let g be a simple Lie algebra
of compact type (defined over R), and let 〈, 〉 be the inner product on g such
that the norm of the short coroots is 1.

Definition 3 [2] Let g be a simple Lie algebra of compact type. Its string Lie
algebra is the 2-Lie algebra str = str(g) given by

str0 = g, str1 = R

and brackets

[ ] = 0, [(X1, c1), (X2, c2)] = ([X1, X2], 0),

[(X1, c1), (X2, c2), (X3, c3)] = (0, 〈[X1, X2], X3〉).

The string Lie algebra should be thought as a central extension of the Lie
algebra g, but which is controlled by H3(g, R) as opposed to H2(g, R). The
Chevalley-Eilenberg complex of str is then given by

C∗(str) = R⊕
[

g
∗

]

⊕
[

Λ2
g
∗ ⊕ R

]

⊕
[

Λ3
g
∗ ⊕ g

∗

]

⊕
[

Λ4
g
∗ ⊕ Λ2

g
∗ ⊕ R

]

⊕ . . .

Following (2), we study

HomDGA

(

C∗(str), Ω∗(∆n)
)

=
{

α ∈ Ω1(∆n; g), β ∈ Ω2(∆n; R)
∣

∣

dα + 1

2
[α, α] = 0, dβ + 1

6
[α, α, α] = 0

}

.
(3)
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The 1-form α satisfies the Maurer Cartan equation, so we can integrate it to
a map f : ∆n → G, defined up to translation. This map satisfies f∗(θL) = α,
where θL ∈ Ω1(G; g) is the left invariant Maurer Cartan form on G. The 3-form
1

6
[α, α, α] is then the pullback of the Cartan 3-form

η = 1

6
〈[θL, θL], θL〉 ∈ Ω3(G; R),

which represents the generator of H3(G, Z). So we can rewrite (3) as
{

f : ∆n → G, β ∈ Ω2(∆n)
∣

∣dβ = f∗(η)
}

/G. (4)

The set of n-simplices in
R

2str is then the quotient of (4) by the relation of
simplicial homotopy relative to the 1-skeleton. Applying this procedure, we
get a simplicial manifold whose geometric realization has the homotopy type of
BStringG and which is equal to the nerve of the 2-group described in [2]. It is
given by

R

2str =
[

∗←← Path(G)/G ←←
← ˜Map(∂∆2, G)/G←←

←← ˜Map(sk1∆3, G)/G · · ·
]

,

where the tilde indicates that the group Map(sk1∆
i, G) has been centrally ex-

tended by S1⊗H1(sk1∆
i). Moreover, its simplicial homotopy groups are given

by π1(
R

2str) = G and π2(
R

2str) = S1.
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