
THE WIGHTMAN AND HAAG-KASTLER AXIOMS

BRAM

In this lecture we discuss the Wightman axioms, which were a set of axioms which formed
the first approach to axiomatizing quantum field theory. After this we treat the Haag-
Kastler axioms, which are a translation of the axioms into the language of nets of algebras
of local observables. Before we can treat the Wightman axioms, we have to give a short
introduction into the mathematics of spacetime, its symmetries and the representation of
these symmetries on the Hilbert space of physical states.

1. Spacetime and symmetries

1.1. Spacetime. The main observation leading to special relativity is that space and time
are not distinct concepts, rather we must consider the 4-dimensional spacetime manifold of
all possible pointlike events. Still we can make a distinction between past and future of a
pointlike event x: we can divide spacetime into three parts: the forward cone V + contain-
ing all events which can be causally influenced from x, the backward cone V − containing
events from which an influence on x can come and the complement S, the ”space-like re-
gion”. The boundary is formed by all events which can be reached by signals travelling at
the speed of light. This causal decomposition expresses a locality principle: no physical
effect can propagate faster than the speed of light.
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Figure 1. Light-cone.

Distances in spacetime are measured by the ”Lorentz distance”: the squared distance
between two points x, x′ in spacetime is

(1) ∆x2 = gµν(x′µ − xµ)(x′ν − xν), gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


where we sum over repeated indices. If this is positive we call the points ”time-like” sepa-
rated, if negative ”space-like” and is zero ”light-like”. The space-time manifold equipped
with this metric is called Minkowski space and denoted M.

1.2. Poincaré group. The invariance group of M is called the Poincaré group. We can
view invariance in 2 different ways. Either we consider maps from M to M with respect to
a fixed coordinate system, where x is mapped to x′ = gx under a diffeomorphism g, this is
the active interpretation. Or we consider g as a coordinate transformation, such that x and
x′ denote the same point in different coordinate systems, this is the passive interpretation.
The invariance group consists of all maps (or coordinate transformations) which do not
change the Lorentz distance between points. This implies that

(2) x′µ = gxµ = aµ + Λµνx
ν

where aµ and Λµν are constant and Λ satisfies

(3) gµνΛµαΛνβ = gαβ.
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If we regard Λµν and gµν as 4 × 4 matrices and ΛT denotes the transposed matrix we can
rewrite this as

(4) ΛTgΛ = g

Now a general element g = (a,Λ) of the Poincare group, denoted P, consist of a translation
4-vector aµ and a Lorentz matrix Λ. The (full) Lorentz group can be described as the set
of 4× 4 matrices satisfying equation 4. This implies

(det Λ)2 = 1 → det Λ = ±1(5)

(Λ0
0)2 = 1 +

∑
i

(Λi0)2 →

{
Λ0

0 ≥ +1, or

Λ0
0 ≤ −1

The full Lorentz group consists of four disconnected pieces depending on the above sign
combinations. The branch with det Λ = 1 and Λ0

0 ≥ 1 will be denoted L and we will
call this the Lorentz group from now on. The other branches can be obtained from L by
reflections in space (or) time.
Fields appearing in classical physics have simple transformation rules under P. Let Φ be a
scalar field, V µ a vector field and Wµ a 1-form, then under g = (a,Λ) we have

Φ′(x) = Φ(g−1x)(6)
V ′µ = ΛµνV

ν(g−1x)(7)

W ′µ = Λ̃νµWν(8)

where Λ̃ = (ΛT )−1. This can easily be extended to higher tensors.

1.3. Covering group. It is important to note that L is locally isomorphic to SL(2,C).
For V µ a 4-vector, we can form the matrix

(9) V̂ =
(

V 0 + V 3 V 1 − iV 2

V 1 + iV 2 V 0 − V 3

)
= V µσµ

where σ0 = 12 and σi are the Pauli matrices. Note that det(V̂ ) = gµνV
µV ν . Now if α is a

complex 2× 2 matrix with determinant 1, then the transformation

(10) V̂ 7→ V̂ ′ = αV̂ α∗

gives a matrix with the same determinant. Therefore, if α defines the linear transformation
on the components V ′µ = ΛµνV ν , this Λ must satisfy equation 3.
We have

(11) V µ =
1
2

tr(V̂ σµ), Λ(α)µν =
1
2

tr(ασµα∗σν)

We see that α and −α give the same Λ: the isomorphism is 2 : 1. Now L is not simply
connected, but SL(2,C) is. Therefore it is the covering group of L and we denote it by L̄.
Accordingly, we denote the covering group of the Poincaré group by P̄.
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1.4. Poincaré invariance. Let us consider a physical system whose behaviour we want to
study and an observer with instruments capable of making measurements. We can define
the the set of possible states of the system and the set of observables which can be measured
on it. These states and observables have there physical counterparts in instruments which
act as sources of the system (preparing it in a certain state) of detectors of an event
(measuring a certain observable).
There are two different types of information in the description of an instrument. Besides
the intrinsic construction of the apparatus, we can specify how the equipment is placed with
respect to some space-time reference system: we can put it in different positions, rotate it,
turn it on at a time of our choice or let it move at a constant velocity. The placement is
specified by 10 parameters, they correspond to the 10 paremeters of P. Poincaré invariance
of the laws of nature means that the result of an experiment should not depend on the
placement: if both source and detector undergo the same shift of placement, the outcome
should be the same.
Suppose we have an ideal source which prepares the system in a pure state. For a specified
placement in our space-time reference system, this state is described by a ray Ψ̂ = {λΨ}
in a Hilbert space H (Ψ ∈ H, λ ∈ C \ {0}). Also, suppose we have an ideal detector which
gives a yes-answer in the case our system is in the pure state Φ̂ and no in the orthogonal
complement of Φ.
The probability of detecting yes is given by the ray product

(12) [Φ̂|Ψ̂] =
|(Φ,Ψ)|2

(Φ,Φ)(Ψ,Ψ)

with (·, ·) the scalar product in H.
Shifting the placement of the source by a Poincaré transformation g = (a,Λ), we denote
the state prepared by this source by Ψ̂g. Correspondingly, shifting the detector by g ∈ P

gives Φ̂g. Now the invariance means that the probability of ”yes” remains the same if both
source and detector are shifted by the same group element:

(13) [Φ̂g|Ψ̂g] = [Φ̂|Ψ̂].

If we keep g fixed and let Ψ̂ run through all rays, we obtain a map T̂g corresponding to
g ∈ P

(14) T̂gΨ̂ = Ψ̂g

which leaves the ray product invariant:

(15) [T̂gΦ̂|T̂gΨ̂] = [Φ̂|Ψ̂]

and satisfies

(16) T̂gT̂g′ = T̂gg′ .

A ray transformation may be replaced in many different ways by a transformation of the
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vectors of H. We have the following theorem, know as the Wigner unitary-antiunitary
theorem:

Theorem 1. A ray transformation T̂ which preserves the ray product can be replaced by
an operator T , which is determined up to an arbitrary phase factor and is either linear and
unitary, or antilinear and antiunitary.

Now in the case of a continous group, antiunitary can be excluded because every group
element is the square of another and the square of two antiunitary operators is unitary. So
we get for every g = (a,Λ) ∈ P a unitary operator Ug = U(a,Λ) which acts on H and is
determined up to a phase factor. The multiplication law becomes

(17) UgUg′ = eiαUgg′

where the phasefactor may depend on g, g′. This makes U a projective representation of
P. Since we still have the freedom to change every operator Ug by a phase factor, we can
simplify the phase function eiα. We have:

Theorem 2. Any ray representation of the Poincaré group can, by a suitable choice of
phases, be made into an ordinary representation of the covering group P̄.

Thus the phase function can be removed if we interpret g, g′ as elements of P̄ and is
reduced to ±1 if we consider P itself.

We conclude: Poincaré invariance in quantum theory means that we have a unitary
representation of P̄ on H, which describes the effect of Poincaré transformations on the
state vectors. The covering group arises because states correspond to rays instead of vectors
of H.

1.5. Irreducible unitary representations of the Poincaré group. The different ir-
reducible representations of P̄ are classified by Wigner.
Let U(a) denote the representor of a translation by a 4-vector aµ and U(α) for that of
α ∈ L̄, where α determines a Lorentz transformation Λ(α). Now the translation subgroup
is commutative and we can write

(18) U(a) = eiPµa
µ

where the infinitesimal generator Pµ are commuting self-adjoint operators. The multipli-
cation in P̄ gives us

(19) U(α)PµU(α)−1 = ΛµνP
ν ; Pµ ≡ gµνPν

Since the Pµ commute, they have a simultaneous spectral decomposition. The spectral
values are a subset of a 4-dimensional space (p-space) and we may represent a general
vector Ψ ∈ H by the set of spectral components Ψp:

(20) Ψ = {Ψp}
where Ψp is a vector in a generalized eigenspace Hp. In the case of a continuous spectrum,
we may consider H as the direct integral of the spaces Hp with respect to a positive measure
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dµ in p-space.
According to equation 19, the operator U(α) maps Hp to Hp′ , where p′ = Λ(α)p. Clearly
all spaces Hp with p-vectors lying in one orbit under L will be mapped to each other by the
action of the U(α), but spaces with p-vectors lying on different orbits will not be mapped
to each other by U(α) or U(a). Therefore, in an irreducible representation, the spectrum
of the Pµ must be concentrated on a single orbit. This gives use a division of irreducible
representation into the classes:

m+: Hyperboloid in forward cone; p2 = m2 and p0 ≥ 0.
0+: Surface of forward cone; p2 = m2 and p0 ≥ 0.
00: The point pµ = 0.
κ: Space-like hyperboloid; p2 = −κ2 (κ real).

m−: Hyperboloid in backward cone; p2 = m2 and p0 ≤ 0.
0−: Surface of backward cone; p2 = 0 and p0 ≤ 0.

Here p2 = gµνp
mupnu = (p0)2 − p2. The operator P 0, considered as observable, is inter-

preted as the total energy of the system. Also, the P i are the components of the spacial
momentum.
We will only consider the first two classes, for the following reason. One of the most
important principles of quantum field theory, ensuring the stability of the system, de-
mands that the energy should have a lower bound. This is not the case in the last three
classes. We discard the 00 class, since this is not of physical interest (all states have zero
energy-momentum). Since the pµ is interpreted as the energy-momentum, the classification
parameter m is of course the rest mass.
We would like to point out that the representations can be further classified by spin, but
we will not discuss that here.

2. The Wightman axioms

In the 1950’s, Wightman and others began to isolate features of quantum field theory
which could be stated in mathematical precise terms. This lead to the ”Wightman axioms”,
which we will now discuss.

2.1. Axiom A. Hilbert space and Poincaré group.

1. We consider a Hilbert space H which carries a unitary representation of P̄.

2. There is a unique state (ray in H), the physical vacuum, which is invariant under
all U(g), g ∈ P.

3. The spectrum of the energy momentum operators Pµ is confined to the forward
cone

(21) p2 ≥ 0, p0 ≥ 0
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2.2. Axiom B. Fields.

1. Fields are ”operator valued distributions” over Minkowski space.

A quantum field Φ(x) at a point is not a proper observable. It can be regarded
as a sesquilinear form on a dense domain D ⊂ H: the matrix element〈Ψ1|Φ(x)|Ψ2〉
is finite when Ψ1,Ψ2 ∈ D and depends linearly on Ψ1, antilinear on Ψ2.
To obain an operator on D we ”smear out” with a smooth function f :

(22) Φ(f) =
∫
dx Φ(x)f(x)

If f is a test function (i.e. it is in the Schwarz space of test functions), then Φ(f)
is an (unbounded) operator.

2. The domain D should contain the vacuum and should be invariant under the action
of P̄ and the operators Φ(f)

If we have several fields, each of which has several tensor of spinor components,
we must take test functions for each type (index i) and each component (index λ):

(23) Φ(f) =
∑
i

∫
d4x Φi

λ(x)f iλ(x) =
∑
i

Φi
λ(f iλ)

2.3. Axiom C. Hermiticity. The set of fields contains with each Φ also the Hermitean
Φ∗, defined as as sesquilinear form on D by

(24) 〈Ψ2|Φ∗(x)|Ψ1〉 = 〈Ψ1|Φ(x)|Ψ2〉

2.4. Axiom D. Transformation properties. The fields transform under P̄ as

(25) U(a, α)Φi
λ(x)U(a, α)−1 = M

(i)ρ
λ (α−1)Φ(i)

ρ (Λ(α)x+ a)

where M(α) is a finite dimensional representation matrix of α ∈ L̄.

This expression should be written in terms of the smeared out fields to get:

U(a, α)Φi
λ(f)U(a, α)−1 = M

(i)ρ
λ (α−1)

∫
d4x Φ(i)

ρ (Λ(α)x+ a)f(x)(26)

= M
(i)ρ
λ (α−1)

∫
d4x Φ(i)

ρ (x)f(Λ(α)−1(x− a)(27)

= M
(i)ρ
λ (α−1) Φ(i)

ρ (f(a,α))(28)

with f(a,α) = f(Λ(α)−1(x− a))
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2.5. Axiom E. Causality. The fields will satisfy either bosonic or fermionic commutation
relations: if the supports of test functions f and g are space-like to each other (x− y is a
space-like vector for every x ∈ suppf and y ∈ suppg), then either

(29) [Φi(f),Φ(g)] = 0

or

(30) [Φi(f),Φ(g)]+ = 0

2.6. Axiom F. Completeness. We can approximate any operator acting on H by taking
linear combinations of products of the operators Φ(f).

2.7. Axiom G. ”Time-slice axiom”. There should be a dynamical law which computes
the fields at an arbitary time, in terms of the fields in a small time slice

(31) Ot,ε = {x : |x0 − t| < ε}
Therefore, the completeness axiom should already apply when we restrict the support of
the test functions to Ot,ε.

Remark 1. The study of the consequences of these axioms is commonly called axiomatic
quantum field theory.

3. Haag Kastler axioms

3.1. Net of algebras. In the above framework, the fields are used to asign to each open
region O of spacetime an algebra A(O) of operators acting on a Hilbert space H, namely
the algebra generated by all Φ(f) with suppf ⊂ O. This suggests that the net of algebras
A, that is the correspondence

(32) O→ A(O)

makes up the intrinsic mathematical description of the theory.

The algebras constructed from the fields are called polynomial algebras because their
elements are obtained as sums of products Φ(f1)Φ(f2).... These operators are in general
unbounded. We can however go over to bounded operators: given an observable, which is
represented by a self-adjoint (possibly unbounded) operator, we can consider it’s spectral
projections. This can also be done for more general operators, by making a polar decom-
positon first. In the following, we we take the algebras A(O) to be an algebra of bounded
operators.

We can now ask ourselfs whether the Wightman axioms are equivalent to a theory
formulated in terms of a net of algebras of bounded operators. It turns out that there are
some difficulties in going from one framework to the other. We will not discuss these, but
note that the Wightman axioms are not sufficient to guarantee the existence of a net of
local algebras of bounded operators and conversely, that such a net does not guarantee
the existence of field system satisfying the Wightman axioms. But for most purposes
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these difficulties may be ignored, so we ask to what extend the Wightman axioms can be
translated into properties of the net of locas algebras?

3.2. Axiom A. Hilbert space and Poincaré group. This axiom can go through with-
out changing. We now have algebras A(O) of operators acting on the hilbert space H,
assumptions on H and the representation of P remain.

3.3. Axiom B. Fields. The definition of the fields suggests an additivity property

(33) A(O1 ∪ O2) = A(O1) ∨A(O2)

where the ∨ denotes the operator algebra generated by the algebras A(Oi).

3.4. Axiom C. Hermiticity. The Hermiticity mean that A(O) is a ∗-algebra: the algebra
A(O) come with an involution A 7→ A∗ which assigns to each A its Hermitean conjugate.

3.5. Axiom D. Transformation property. The tranformation property becomes, in
terms of the net of algebras:

(34) U(a, α)A(O)U(a, α)−1 = A(Λ(α)O + a)

So the symmetry operations on spacetime map the algebra of operation of one region to
the algebra of the transformed region.

3.6. Axiom E. Causality. Two observables associated with space-like separated regions
are compatible: the measurement of one observable should not influence the measurement
of the other. Therefore, the operators representing these observables must commute.

3.7. Axiom F. Completeness. This axiom is unchanged: we demand that every operator
acting on H can be appriximated by linear combinations of products of elements of each
A(O).

3.8. Axiom G. ”Time-slice axiom. Also this axiom is unchanged.

3.9. Unobservable fields. It turns out that in quantum field theory there occur observ-
able and unobservable fields. The observable fields generate a net of algebras Aobs(O) in
which the causality principle is

(35) [A1, A2] = 0 if Ai ∈ Aobs(Oi) and O1 is space-like to O2

The unobservable fields lead to superselection rules. This will be treated later, but the
basic idea is that the Hilbert space H is a direct sum of supspaces Hk which are called
superselection sectors. These sectors are distinguished by global properties such as charge.

The observable algebras Aobs(O) transform each sector into itself, while the unobservable
fields connect different sectors. Now for each sector we have a net of operator algebras
Aobs|Hk

, which must contain al physically relevant information. The natural explanation
for this is that the intrinsic structure of the theory is fully characterized by the algebraic
relations in the net of observable algebras. Hence, the basic object to consider is a net of
abstract algebras instead of their representative operator algebras on H.
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We denote the abstract observable algebra of the region O by U(O). We regard these
algebras to be defined only for finite regions (open subsets of M with compact closure).
We can then define the algebra of algebra of ”all local observables” as

(36) Uloc = ∪ U(O)

where the union is taken over all finite regions and we define the C∗-algebra of ”quasi-local
observables” as

(37) U = Uloc

where the closure is taken in the norm topology. The superselection rules now come up if
the net U has inequivalent representations of operator algebras acting on a Hilbert space.

If we formulate the theory in terms of abstract algebras we must reconsider the notion
of Poincaré invariance. This means now that to g ∈ P there correspond an automorphism
αg of the net with the property

(38) αgU(O) = U(gO).

A representation of U is a homomorphism from U tot a net of operator algebras π(U)
acting on some Hilbert space. Given a representation π, the automorpism αg is called
implementable in π if there exist a unitary operator U(g) acting in the representation
space such that

(39) U(g)π(A)U(g)−1 = π(αgA).

We can now state axiom A. in terms of the abstract algebra:

the abstract algebra U should have an irreducible representation π0 in which αg is im-
plementable and which also satisfies Axiom A.2 and A.3.

The other axioms can also be stated in a simple way in the language of the abstract
algebras:

a) The theory is characterized by a net of abstract C∗-algebras

(40) O→ U(O)

where O denotes a finite region of M. The self-adjoint elements of U(O) are inter-
preted as observables which can be measured in O.

b) The Poincaré group is realized by a group of automorphism of the net (P 3 g → αg)
which satisfies

(41) αgU(O) = U(gO).

c) The causality is expressed by
(i) [U(O1),U(O2)] = 0 if O1 and O2 are spacelike separated.
(ii) If Ô is the causal completion of O then U(Ô) = U(O).

Remark 2. The prototype of a causally complete region is a diamond or double cone.
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Remark 3. The idea to base the theory on a net of local algebras corresponding to spacetime
region was proposed by Haag. The axioms in terms of the nets of local observables are
called the ”Haag-Kastler” axioms.


