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Abstract

These are notes for the talks of 29 May of the Utrecht University
student seminar on algebraic quantum field theory of Spring 2013. Every
conformal net has an invariant c ∈ R associated to it, called its central
charge. Kawahigashi and Longo have classified conformal nets with c < 1
and we will discuss some ideas and tools that go into their proof.

1 Introduction
Recall from Joost’s talk of 1 May the construction of certain conformal nets,
called Virasoro nets from projective unitary representations of Diff+(S1). Joost
denoted them by AVir,c, but we will write Virc. These turn out to play a central
role in the general theory, because every conformal net contains a copy of a
Virasoro net.

If A is a conformal net and U its unitary representation of Diff+(S1), then
we call a family of von Neumann algebras {B(I)}I∈I with B(I) ⊆ A(I) a
(conformal) subnet of A if B is also isotonous, that is, B(I) ⊆ B(J) if I ⊆ J ,
and B is also diffeomorphism covariant, that is, U(g)B(I)U(g)∗ = B(gI) for all
g ∈ Diff+(S1). So this definition is what you would expect, except that there
is a slight subtility: if the vacuum vector Ω of A is also cyclic for the whole
Hilbert space for all B(I), then B and A must agree. This can be proven with
the theorem by Takesaki that was discussed by André at the beginning of his
talk on 10 May. See [1, Lemma 3.3] for a proof.

Recall that a Möbius covariant net A with Hilbert space H is called ir-
reducible if

∨
I∈I A(I) = B(H). Alternative definitions may be given by the

demand that its vacuum vector Ω is up to scalar multiples the unique vector
invariant under the representation of the Möbius group, or the demand that all
von Neumann algebras A(I) are factors. In this case, they are either C or a type
III1-factor.
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Proposition 1.1. Let A be an irreducible conformal net. Then it contains
canonically a subnet that is isomorphic to Virc for some central charge c If c < 1,
then this subnet is an irreducible subnet with finite index.

If U is the projective unitary representation of Diff+(S1) that implements
the diffeomorphism covariance of A, then the candidate for Virc is the subnet
U(Diff+(I))′′. See [6, Proposition 3.5] for the rest of the proof.

In turn, Virasoro nets do not contain any proper conformal nets themselves.
In particular, applying the above construction will give you the Virasoro net
back. It is for this reason that they sometimes go under the name minimal models
in the physics literature.

Definition 1.2. The central charge of an irreducible conformal net A is the
scalar c ∈ R such that Virc ⊆ A.

When trying to classify conformal nets, it turns out to be a good idea to
do this by their central charge. The nets that have a given central charge c
are namely by definition the extensions of the Virasoro net Virc. As André
explained, inclusions of conformal nets behave the other way around compared to
for example inclusions of groups: for a given conformal net, its family of subnets
might be very large, and it is the family of extensions on which restrictive
conditions hold.

In 2004, Yasuyuki Kawahigashi and Roberto Longo succeeded in classifying
all conformal nets with c < 1. This is the topic of this talk. Note that for example
loop group nets and lattice nets will fall outside this classification. The net
associated to an even lattice Λ for example will have central charge equal to the
rank of Λ. Their result is as follows:

Theorem 1.3 (Kawahigashi, Longo [6]). The irreducible conformal nets with
central charge c < 1 are

• the Virasoro nets Virc with c < 1,

• two infinite families, namely the simple current extensions with index 2 of
the above Virasoro nets,

• four exceptional nets, which have central charge c = 21
22 ,

25
26 ,

144
145 and 154

155 .

More precisely, this list turns out to correspond to the list of pairs of A-D2n-
E6,8 Dynkin diagrams such that the difference of the Coxeter numbers is 1. A
little bit more on this later.

The plan is to construct for a fixed Virasoro net Virc with c < 1 a map{
irreducible extensions
B ⊇ Virc of finite index

}
→
{

type I modular
invariants of Virc

}
.

The right hand side is a certain finite set of matrices associated to Virc that has
been completely classified: it corresponds to the above mentioned list of pairs of
Dynkin diagrams. The heart of Kawahigashi and Longo’s proof is then showing
that this map is a bijection, which therefore implies a classification of the left
hand side. These notes will discuss the proof of the bijectivity though.
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2 Completely rational conformal nets
This, and the next section will discuss somewhat more general theory of conformal
nets than what only applies to Virc. We will restrict ourselves to a particular class
of ‘nice’ conformal nets. We will only define what this means for an irreducible
net, because otherwise one of the conditions becomes slightly more technical.

Definition 2.1. An irreducible conformal net A is called completely rational
if it is

• split : if I1 and I2 are two intervals such that I1 ⊆ I◦2 , then A(I1)∨A(I ′2) =
A(I1)⊗A(I2),

• strongly additive (‘removing a single point from an interval does not
matter’): if I1 and I2 are two intervals that are obtained by removing a
single point from an interval I, then A(I) = A(I1) ∨ A(I2),

• of finite index : if we split the S1 into four disjoint intervals I1, . . . , I4,
where I1 and I3 do not touch and I2 and I4 do not touch, then the inclusion
of factors A(I1)∨A(I3) ⊆ (A(I2)∨A(I4))′ (that we have by locality of A)
is of finite Jones-Kosaki index.

What we will be interested in is that these three quite technical conditions
on a net turn out to imply that its representation theory is especially nice. For
the rest of this section, A will be an irreducible, completely rational conformal
net. Recall that for two representations λ and µ, we denoted their braiding by
βλµ : λ◦µ→ µ◦λ. See for details on this braiding André’s talk of 10 May and [5,
Section IV.4].

Theorem 2.2. The category of representations RepA of A is a modular
tensor category. The most important properties of such a category are

• there is a notion of simplicity of an object, and every object is semisimple,
that is, isomorphic to a finite direct sum of simple objects,

• up to isomorphism, there are only finitely many simple objects, say λ0, . . . , λn,
where λ0 := H0, the vacuum representation,

• the braiding that we have on the tensor category RepA is non-degenerate,
that is, if λ ∈ RepA is a simple object such that

βλµ ◦ βµλ = idµλ

for all simple objects µ ∈ RepA, then λ must be the vacuum representation
λ0 = H0.

This second property can be interpreted as saying that when a strand labeled
by λ is braided with another strand labeled with µ, then this is a genuine braiding.
One can not pull the λ-strand through the µ-strand to obtain two unbraided
strands going straight down.

It has been shown that the loop group nets SU(2)k are completely rational.
For low levels, their simple objects have appeared several times in André’s talks
in this seminar. Furthermore, this result can be used to show that also Virasoro
nets Virc with c < 1 are completely rational. See [5, Corollary 3.4].

We will now start the construction of two matrices S and T associated to A.
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Definition 2.3. TheVerlinde, or also called fusion coefficients Nλ
µν of A are

defined as the dimensions of certain intertwiner spaces between representations
of A

Nλ
µν := dim Hom(λ, µ ◦ ν),

where µ, ν and λ run over all simple objects in RepA.

Alternatively, we may observe that the Grothendieck group K0(RepA) of
the category RepA is a finite-dimensional algebra over C with basis the classes
[λ] of the simple objects λ of RepA and product given by [µ] · [ν] := [µ ◦ ν],
where µ and ν are simple objects. Then the Verlinde coefficients are nothing but
the structure coefficients with respect to this basis:

[µ] · [ν] := [µ ◦ ν] =:
∑

λ simple

Nλ
µν [λ].

Recall from Bram’s last talk of 15 May that we associated to every simple
object λ ∈ RepA its statistical dimension dλ ∈ C and its statistics phase
κλ ∈ S1 ⊆ C. This statistics phase can be interpreted as the value of the twist
isomorphism λ→ λ.

Definition 2.4. We define Rehren’s Y -matrix associated to A as the matrix
with coefficients

Yµν :=
∑

λ simple

κµκν
κλ

Nλ
µνdλ ∈ C,

where µ and ν are simple objects of RepA. We furthermore define the following
two scalars z and c associated to A:

z :=
∑

λ simple

d2λκλ

and
c := 4 · arg(z)/π.

The expression for Yµν is complicated, but it turns out to be nothing but
tr(βµν ◦ βνµ). That is, it is the scalar assigned to the Hopf link labeled with µ
and ν. See [2, Section 4] for some pictures. Note that c is only well-defined up to
multiples of 8. This will not matter though for the following definition.

Definition 2.5. The S and T matrices associated to A are given by the
coefficients

Sµν := |z|−1Yµν
and

Tµν := e−πic/12κµδµν ,

where µ and ν are simple objects of RepA.

So S is a certain normalisation of Rehren’s Y -matrix and T is a certain
normalisation of the diagonal matrix of the values κµ of the twists on the simple
objects.

These matrices turn out to afford a representation of SL(2,Z) on K0(RepA).
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3 α-Induction and modular invariants
Recall that if G is a finite group, H ⊆ G a subgroup and ρ : H → GL(W ) a
representation of H on a finite dimensional vector space W , then there is a
method to lift ρ to a representation of G by defining IndGH := C[G] ⊗C[H] W ,
where C[G] and C[H] are the group algebras of G and H respectively. This
is known as the induced representation of W . The same thing works in the
representation theory of Lie algebras for example, except that there the universal
enveloping algebra takes on the role of group algebra.

Something similar is possible for representations of conformal nets, and this
method is known as α-induction. There are important differences though. Firstly,
for an extension of groups H ⊆ G, G has a larger symmetry and in some sense
also a larger representation category. On the other hand, in an extension B ⊇ A
of conformal nets, B will have in some sense a smaller representation category
than A. The representations induced from representations of A will not be
genuine representations of B. Kawahigashi describes this as RepB being ‘too
small’ to accept the image of α-induction.

Another difference is that α-induction applied to an extension B ⊇ A will
make use of the braiding structure on RepA. Recall, however, that we defined
this braiding by always choosing an equivalent representation localised in an
interval to the right. We might as well have chosen to always localise to the
left, and this would have given a different braiding. We denote the former
with β+ and the latter with β−. This is the geometrical interpretation in our
context of the abstract fact that in a tensor category equipped with a braiding
cV,W : V ⊗W → W ⊗ V , c−1W,V again defines a braiding: braidings on tensor
categories always come in pairs. Therefore, for each representation λ of A, there
will be two induced representations of B: α+

λ and α−λ .
The definition of α-induction can probably be given in a manner very similar

to that of induction of group or Lie algebra representations. This would require
more machinery though, which has already been developed by André and his
collaborators.

Recall the following global version of the canonical endomorphism of a
subfactor from the first half of Laura’s talk of 22 May. Let B ⊇ A be an
irreducible extension of finite index and ι : A → B the inclusion. Then there
exists for each interval I a map ι : B → A such that for all intervals Ĩ ⊇ I,
ι ◦ ι|B(I) is a canonical endomorphism for B(Ĩ). We define

γ := ι ◦ ι, θ := ι ◦ ι,

and call these the canonical, and dual canonical endomorphism of A ⊆ B
respectively.

Definition 3.1. Let B ⊇ A be an irreducible extension of finite index of A and
λ ∈ RepA. Then we define its two induced representations α+

λ and α−λ as

α±λ := ι−1 ◦Ad(β±λθ) ◦ λ ◦ ι.

We have α±λ |B(I) ∈ EndB(I). Furthermore, α±λ ◦ ι = ι ◦ λ, that is, its
restriction to A gives you λ back again. Secondly, α±HA

0
= HB0 , that is, the

vacuum representation of A lifts to that of B.
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Definition 3.2. A modular invariant (matrix), also called a coupling
matrix, of A is a matrix Z, whose columns and rows are labeled by the simple
objects of RepA, such that

• Zλµ is a non-negative integer for all λ and µ,

• Z00 = 1,

• Z commutes with the S and T matrices associated to A.

Note that a net always has at least one modular invariant, namely the identity
matrix. It might have more though. In André’s talk of 29 March, he mentioned
in the discussion of the construction of an anomaly-free full cft that SU(2)1,
SU(2)2 and SU(2)3 only have a trivial modular invariant, while SU(2)4 also has
the matrix 

1 1
0 0

2
0 0

1 1

 .

In general, we have the following result:

Proposition 3.3. A completely rational conformal net has only finitely many
modular invariants.

This number will often be 1, 2 or 3 for us. See the last paragraph on page 4
of [2] for a proof.

Theorem 3.4. Let B ⊇ A be an irreducible extension of finite index. Then the
matrix Z with columns and rows labeled by the simple objects of RepA, and
defined by

Zλµ := dim Hom(α+
λ , α

−
µ ),

is a type I modular invariant of A.

See [3, Corollary 5.8] for a proof. So we have a map{
irreducible extensions
B ⊇ A of finite index

}
→
{

type I modular
invariants of A

}
.

In general, this map will not be injective or surjective. Kawahigashi and Longo
proved that it bijective for A = Virc if c < 1.

The modular invariants of Virc with c < 1 have been classified in [4]. Those
of type I turn out to be labeled by the following pairs of Dynkin diagrams. Write
c = 1− 6/(m(m+ 1)) < 1, m = 2, 3, 4, . . .. Then

m n 4n+ 1 4n+ 2 11 12 29 30

Label (An−1, An) (A4n, D2n+2) (D2n+2, A4n+2) (A10, E6) (E6, A12) (A28, E8) (E8, A30)
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