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We will give two constructions of conformal nets, i.e. local Möbius covariant nets where the action of
the Möbius group is enhanced to an action of the full diffeomorphism group of the circle. The first, the
Virasoro net, will be the ‘smallest’ conformal net around: it essentially consists just of the action of the
diffeomorphisms on the circle. The second example will be the conformal net associated to a lattice,
which describes one chiral part of a string moving on a torus.

1 Virasoro conformal net

The Virasoro net with central charge c consists essentially just of a projective action of Diff+(S1) with
central charge c. Whenever c takes an allowed value, we can construct such a projective action from the
representation theory of the Virasoro algebra. From this we then construct a conformal net, the Virasoro
net (with central charge c).

1.1 The Virasoro algebra

Since Diff+(S1) is hard to understand, we start by considering the Lie algebra Vect(S1) of vector fields
on the circle, given by f(eiθ) ∂∂θ for real-valued functions f ∈ C∞(S1). We complexify this by considering
also complex functions, and focus mainly on the dense subalgebra spanned by complex vector fields of
the form zn+1 ∂

∂z = −ieinθ · ∂∂θ =: Ln. These vector fields satisfy [Ln, Lm] = (m− n)Ln+m and form the
so-called Witt algebra. Recall from Laurents talk that this Lie algebra admits a central extension, the
Virasoro algebra, which as a vector space is Span{Ln} ⊕ Cκ, with commutator is

[Ln, Lm] = (m− n)Ln+m + c(Ln, Lm) [Ln, κ] = [κ, κ] = 0

where c is the 2-cocycle

c(Ln, Lm) =
κ

12
(n3 − n)δn+m,0

One can check that this is (up to scaling) the only central extension of the Witt algebra. We can extend
this cocycle to the whole of VectC(S1) by

ω
(
f(eiθ)

∂

∂θ
, g(eiθ)

∂

∂θ

)
∝
∫ 2π

0

D3
(
f(eiθ)

)
· g(eiθ)−D3

(
g(eiθ)

)
· f(eiθ)dθ (1)
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where D = e−iθ ∂∂θ . We implicitly embed the (complexified) vector fields in the Virasoro algebra (but
not as a Lie algebra). Note that the above cocycle vanishes on vector fields having disjoint supports, so
these vector fields still commute as elements of the Virasoro algebra.

We have the following subalgebras of the Virasoro algebra:

• t = CL0 ⊕ Cκ a maximal torus.

• Vir+ = Span{Ln : n > 0}

• Vir− = Span{Ln : n < 0}

• sl2 = Span{L−1, L0, L1}. Note that on these generators, the cocycle defining the Virasoro algebra
vanishes. In terms of vector fields, the real part (i.e. those vector fields in the span which are
of the form f(eiθ) ∂∂θ for f real-valued) gives precisely the vector fields giving rise to the Möbius
transformations of the circle.

For example, iL0 = ∂
∂θ is a true vector field on S1. The corresponding group element exp(iαL0)

gives a rotation over angle α. Following the physics terminology, we will say the element L0

generates rotations (instead of iL0).

It is important to note that the Lie algebra of the Möbius group sits in the Virasoro algebra as a Lie
algebra.

1.2 Representations of Virasoro algebra

We will be interested in irreducible representations of the Virasoro algebra which are irreducible, unitary
and have positive energy. Unitarity means that there is an inner product such that〈

Lnv, w
〉

=
〈
v, L−nw

〉
and positive energy means that the vector field L0 generating the rotations of the circle acts by a
positive operator. Irreducibility and positive energy will motivate us to consider lowest weight modules,
i.e. modules generated by a vector v0 such that Lnv0 = 0 for all n < 0.

Remark 1. The fact that L∗n = L−n will imply that real vector fields on S1 will act by skew-adjoint
operators: for example L0 will be self-adjoint, so the vector field ∂

∂θ = iL0 will be skew-adjoint, and
therefore can be exponentiated to a unitary operator.

It turns out that for each pair of numbers c, h ∈ C (central charge and lowest energy), there is an
irreducible lowest weight module L(c, h) of Vir. The condition that the module admits an inner product
as above and has positive energy will restrict the possible values of c and h.

1.2.1 Irreps of the Virasoro algebra

We quickly recall the construction of the lowest weight irreducible representations of V ir.

Definition 1. The Verma module V (c, h) of lowest weight h and central charge c is the universal module
containing a lowest weight vector v0 generating the module such that L0v0 = h·v0, in which κ acts centrally
by c. Universality means that any other module with these properties has a unique map from V (c, h).

Explicitly, using the subalgebras of V ir given above, it is constructed as

V (c, h) = U(V ir)⊗U(h⊕n−) C(c,h)

where C(c,h) is the module where κ acts by c, L0 acts by h and Ln<0 acts by 0.

Even more explicitly, V (c, h) is spanned by vectors

Ln1Ln2 ...Lniv0 n1 ≥ n2 ≥ ... ≥ ni > 0

where v0 is the lowest weight vector, annihilated by Ln for n < 0, L0v0 = h · v0 and κ · v0 = c · v0.
Observe that

L0

(
Ln1

Ln2
...Lni

v0

)
= (h+ n1 + ...+ ni)Ln1

Ln2
...Lni

v0
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so L0 acts diagonally and has spectrum h+Z≥0. In particular, if we want positive energy representations,
then h ≥ 01.

Note that Ln increases the eigenvalue of L0 by n, whereas L−n decreases it by n. Let Vh+n be the
h+n-eigenspace of L0. It is finite dimensional, with dim{L0v = (h+n)v} = P (n) the partition number
of n (i.e. the number of ways to write n as a sum of positives, where the order does not matter).

Lemma 1.1. Let W be a submodule of V (c, h). Then W decomposes as a sum of L0-eigenspaces:
W = ⊕n≥0W ∩ Vh+n.

Definition 2. Let J be the unique maximal proper submodule of V (c, h). It exists because no proper
submodule can contain the lowest weight vector. Taking the sum of all proper submodule then gives a
unique maximal proper submodule.

Let L(c, h) = V (c, h)/J be the unique irreducible module L(c, h) with central charge c and lowest
weight h: it is irreducible since any proper submodule would give a proper submodule of V (c, h) not in J
and it is unique since any irreducible lowest weight module is a quotient of a Verma module.

The maximal submodule J(c, h) decomposes as J(c, h) =
⊕

n J(c, h) ∩ Vh+n. This means that the
quotient

L(c, h) =
⊕
n

Vh+n/
(
J(c, h) ∩ Vh+n

)
still carries a diagonal action of L0, with eigenvalues again contained in h+ Z≥0. It is not a priori clear
if all eigenvalues are still attained, but this turns out to be true (except in the case that h = 0, in which
case we are missing the eigenvalue 1, see below).

1.2.2 Inner product

Lemma 1.2. When c, h ∈ R, there is a unique Hermitean form
〈
−,−

〉
on V (c, h) such that L∗n = L−n

and
〈
v0, v0

〉
= 1.

Proof. It is constructed as follows: first, we have〈
v0, Ln1

...Lni
v0

〉
=
〈
L−n1

v0, Ln2
...Lni

v0

〉
= 0

To write down an arbitrary inner product, we use〈
Lm1 ...Lmjv0, Ln1 ...Lniv0

〉
=
〈
v0, L−mj ...L−m1Ln1 ...Lniv0

〉
We then write out the right hand side: it will be in the level h +

∑
n −

∑
m-eigenspace of L0. In

particular, it follows that the different eigenspaces of L0 are orthogonal. If
∑
m =

∑
n, we end up with

some number one can compute.
Note that we need h ∈ R to make sure L0 = L∗0. The condition c ∈ R comes for instance from the

fact that
〈
Lnv0, Lnv0

〉
∈ R. Finally, one can show that the above really does define a Hermitean form

on V (c, h) (which is automatically unique by the above computation).

Lemma 1.3. The maximal proper submodule J(c, h) of V (c, h) is precisely the space

{v ∈ V (c, h) :
〈
v,−

〉
= 0}.

Proof. It is manifestly a proper submodule. Now suppose there is X · v0 ∈ J(c, h) not lying in the above
space, so that there is a Y · v0 with

1 =
〈
X · v0, Y · v0

〉
=
〈
Y ∗X · v0, v0

〉
This means that Y ∗X · v0 has a component along v0, but (since Y ∗ ∈ V ir) also Y ∗X · v0 ∈ J(c, h), since
the latter is a submodule. But J =

⊕
n≥0 J ∩ Vn and we find a vector with component along V0, so we

see that J ∩ V0 6= 0. We conclude that J = V (c, h), which is a contradiction.

1well, actually we want the rotations to have some positive generator. Since these act periodically, we can always add
or subtract a multiple of 2π, so we really want the spectrum to be bounded from below

3



Remark 2. If h = 0, we see that
〈
L−1v0, L−1v0

〉
= 0, so L−1v0 is self-perpendicular. Since it is also

perpendicular to all the other eigenspaces, it must lie in J(c, h), so the whole level 1 eigenspace is divided
out.

Since the Hermitean form vanishes on the submodule J , it descends to a Hermitean form on L(c, h)
(when c, h ∈ R). This is the unique Hermitean form on L(c, h) such that L∗n = L−n and

〈
v0, v0

〉
= 1.

1.2.3 Unitary and positive energy

We have found a simple module on which L0 acts positively, together with a Hermitean form. In the end
we want the module L(c, h) to have not just a Hermitean form, but we want it to be positive definite.

Lemma 1.4. If the above (unique) Hermitean form on L(c, h) is positive definite, then c, h ≥ 0.

Proof. We have for any n:

0 <
〈
Lnv0, Lnv0

〉
=
〈
v0, L−nLnv0

〉
=
〈
v0, [L−n, Ln]v0

〉
= 2nh+

c

12
(n3 − n)

Taking n = 1, we get that h ≥ 0 and if c < 0, then for large n the right hand side will turn negative.

A more precise analysis of which c, h can possibly give a positive-definite Hermitean form is done in
[1]. It turns out we have the following cases:

• c ≥ 1 and h ≥ 0.

• there is m ∈ Z≥2, together with p = 1, ...,m− 1, q = 1, ..., p such that

c = c(m) = 1− 6

m(m+ 1)

and

h = hp,q(m) =

(
(m+ 1)p−mq

)2 − 1

4m(m+ 1)

On the other hand, all the above cases really do allow for such an inner product [2]. Throughout we will
assume we are in one of the above situations.

Now that we have an inner product, we can take the Hilbert space completion H(c, h) of L(c, h). We
can then view all operators Ln as unbounded operators on the dense domain L(c, h). L(c, h) consists of
the so-called finite energy representations, which means that it consists only of vectors which decompose
into finitely many L0-eigenstates.

1.3 Action of Diff+(S1)

We have seen how to construct irreducible positive energy representations of the Virasoro algebra and
which ones of them allow for an inner product such L∗n = L−n. We now construct a net with central
charge c from such a module.

Now suppose that f ∈ C∞(S1) is a smooth function with finite Fourier decomposition (which one
should view as being the vector field f(eiθ) ∂∂θ and let

fn =

∫ 2π

0

dθ

2π
e−inθf(θ)

be the n-th Fourier coefficient. We then define

T(c,h)(f) =
∑
n

fnLn

which is an unbounded operator on Hc,h with dense domain L(c, h). This is really just the operator
by which −if(eiθ) ∂∂θ ∈ Vir acts on H(c, h) (note the extra factor of −i, which makes the operator
self-adjoint instead of skew-adjoint, see remark 1).
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Morally, we want to view T(c,h) as an operator-valued distribution, given by

T(c,h)(z) =
∑
n

Lnz
−n−1

on the circle. Then (morally), T(c,h)(f) is given by the contour integral

T(c,h)(f) =
1

2πi

∫
S1

T(c,h)(z)f(z) · zdz

In any case, if f is real valued, the operator T(c,h)(f) will be essentially self-adjoint and will exponentiate

to a unitary operator eiT (f) (some things to be checked here).

To construct the Virasoro net, we need a good chunk of functional analysis to (a) extend the above
picture to all vector fields on the circle and (b) show that this yields a projective unitary action of the
diffeomorphism group on H(c,h).

The idea is to first extend the above assignment f 7→ eiT (f) to all smooth functions f using some
norm estimates. Given a 1-parameter family of diffeomorphisms φt integrating a vector field X, we then
define

U(c,h)(φt) := eit·T (X) ∈ PU(H) = U(H)/U(1)

Remark 3. Because the Virasoro algebra is a nontrivial central extension of the vector fields, the above
formula will only give a representation of the diffeomorphism group if we divide out the phase factors
introduced by the cocycle. Hence we will find a projective unitary representation of the diffeomorphism
group.

Since the 1-parameter subgroups generated by a vector field lie dense in Diff+(S1), one gets a projec-
tive unitary representation of the diffeomorphism group, as shown in [3], theorem 4.2. The ‘projectiveness’
of this action is measured by the cocycle from the Virasoro algebra (which was also defined for all of
VectC(S1), see equation 1).

Apart from all the technical difficulties extending stuff to all diffeomorphisms, there is one thing we
can check: note that if we exponentiate elements of the Lie algebra, we generally end up in the universal
cover of the group we are working with. A similar thing happens here: we end up in the universal cover
of Diff+(S1), which is nontrivial since Diff+(S1) contains the rotation group U(1). The universal cover
is

˜Diff+(S1) = {φ : R ∼−→ R : φ(x+ 2π) = φ(x)}

The map φ̃(eit) = eiφ(t) gives a diffeomorphism S1 −→ S1, and we get a quotient map ˜Diff+(S1) −→
Diff+(S1) whose kernel are precisely the translations by a multiple of 2π.

We have to check that we really get a projective action of Diff+(S1), not ˜Diff+(S1). To check this,
let L0 be the vector field generating the rotations. We have to check that t 7→ eit·T (L0) acts by a scalar
if t ∈ 2πZ (since actions of scalars are precisely divided out if we consider projective actions). But this
follows from the fact that the eigenvalues of L0 lie in h+Z≥0. Indeed, note that on any eigenvector v of
L0 with eigenvalue h+N (these span the dense domain L(c, h)), we have

e2πi·T (L0)v = e2πi·(h+N)v = e2πi·hv

which is independent of N . Hence e2πi·T (L0) acts by a scalar.

Remark 4. We have already seen that V ir has a subalgebra spanned by L−1, L0, L1, whose real part
integrates to a cover of the Möbius group PSL(2,R). Since the cocycle vanishes on this subalgebra, the
above formulas actually give rise to a unitary action of the universal cover of the Möbius group.

To see that we get a unitary representation of the Möbius group itself, we have to show again that
2π-rotations give the identity (but now in U(H) instead of PU(H)). This forces h ∈ Z≥0.

Remark 5. We have worked with a projective action of Diff+(S1) without using that we had an explicit
central extension acting on the infinitesimal level. In fact, it turns out that the projective action of
Diff+(S1) can be extended to an actual unitary action of a central extension of Diff+(S1). The cocycle
describing this central extension is roughly the exponentiated version of the one for vector fields 1.
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1.4 The Virasoro net

After the tour de force of constructing a projective representation of Diff+(S1), one can easily define a
local net by

Definition 3. The Virsoro net is the functor

AVir,c : I 7→ {U(c,0)(φ)
∣∣φ ∈ Diff+(I) ⊆ Diff+(S1)}′′

where Diff+(I) is the subset of diffeos of the circle that are the identity outside the interval I. It acts on
the Hilbert space H(c, 0) with vacuum Ω = v0 the lowest weight vector.

It will be important for the properties of a local net that we set h = 0. Recall that in the case h = 0,
we have L−1v0 = 0.

Remark 6. Note that the above definition makes sense, although U(c,0)(φ) is not really an element in
B(H): indeed, if we pick any lift of this projective unitary (unique up to a phase), then A(I)′ consists
of all a commuting with this lift (since the lifts differ by a phase, this is independent of the chosen lift).

Theorem 1.5. AVir,c is a conformal net.

Proof. Isotony is trivial. Locality follows from remark 5: suppose φ only changes an interval I and ψ
only changes I ′. Assuming these diffeos come from flows (we can always approximate them by those),
the generating vector fields have disjoint support. Consequently, the Lie algebra cocycle 1 vanishes on
these vector fields.

Also globally, the smooth group cocycle (which is roughly the exponentiated version of 1) will vanish
on these two diffeomorphisms. Since clearly φψ = ψφ and the cocycle vanishes, a lift of these diffeos to the
central extension of Diff+(S1) commutes. This implies that U(φ)U(ψ) = U(ψ)U(φ), even if we interpret
these as true unitaries, not just elements of U(H)/U(1). From this one deduces that U(ψ) ∈ AVir,c(I)′

and therefore AVir,c(I
′) ⊆ AVir,c(I)′.

Next is Möbius invariance. We have already discussed the action of the Möbius group on H(c,0) in

remark 4 For the covariance property, let φ ∈ Diff+(I) and g ∈ Möb, so that gφg−1 ∈ Diff+(gI). Then

U(φ)aU(φ)∗ = a ⇔ U(gφg−1)
(
U(g)aU(g∗)

)
U(gφg−1)∗ = U(g)aU(g)∗

which shows U(g)A(I)′U(g)∗ ⊆ A(gI)′. The same argument shows the reverse inclusion. Taking another
commutant shows U(g)A(I)U(g)∗ = A(gI).

Observe that by definition, the generator L0 of rotations has positive energy. The invariance of the
vacuum under the Möbius group follows from the fact that

L−1v0 = L0v0 = L1v0 = 0

since h = 0. Moreover, it is the unique such vector (all others have a nonzero eigenvalue component for
L0, so eiL0 will act nontrivially).

Finally, it is easily checked that Diff+(S1) is generated by the diffeomorphisms of the intervals. It
then follows that

∨
A(I) contains all lifts of U(φ), for any diffeomorphism. In particular, it will contain

the operators eitLn and then also their generators Ln. Then clearly v0 is cyclic for
∨
A(I).

Finally, we note that our net is not just Möbius covariant, but even diffeomorphism covariant (hence
‘conformal’): the unitary action of the Möbius group extends to a projective action of the diffeomorphism
group on H(c, 0) (which we have already constructed). It is easily checked that

U(φ)A(I)U(φ)∗ = A(φI)

by the same argument as for the Möbius group.
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2 Conformal net associated to a lattice

The name of this section is a bit misleading: essentially we construct a conformal net from the represen-
tation theory of (central extensions of) the loop group of a torus Lie group.

Recall the setup from Peters talk: there we considered a compact, simple, simply connected Lie group
G. It turns out for such a Lie group the Lie group cohomology H3

Lie(G,U(1)) ' Z. After transgressing
over the circle, one obtains that H2(LG,U(1)) ' Z. Correspondingly, for each level k, one obtains a
(smooth) U(1)-central extension of the loop group LG.

We have seen that the above global picture has a nice infinitesimal analogue: infinitesimally, H3
Lie(G,U(1))

can be described in terms of invariant polynomials on the Lie algebra g. In particular, the central ex-
tension of the loop Lie algebra had a simple expression in terms of invariant polynomials.

Passing to the global Lie group, one always gets an extension by a smooth group, but not necessarily
by U(1): for this to happen, the corresponding Lie algebra cocycle will have to be integral (otherwise,
one gets an extension by R//Γ where Γ is the not-so-nice period lattice of the cocycle).

Summarizing, for simple, simply connected Lie groups, one easily gets U(1)-extensions: one picks an
invariant polynomial on g and normalizes it such that the corresponding extension of LG is really by
U(1).

Essentially we will do the same thing for a torus Lie group T = U(1)×n.

2.1 Loop group of the torus and its central extension

Let T = U(1)×n be a torus Lie group and t its Lie algebra. The exponential map exp : t −→ T gives an

isomorphism T = t/Λ, where Λ = ker exp is a free lattice in t, of full rank (i.e. it really just looks like
Z×n inside R×n).

Let LT = C∞(S1, T ) be the loop group of the torus. First observe that this group is not connected,
since T is not simply connected: each connected component is labeled by an element of Λ, called the
winding number of the loop in the torus.

As for the diffeomorphism group, we have that LT has nontrivial first homotopy group. The universal
cover of LT can be described as2

L̃T =
{
f : R −→ t = Rn : f(θ + 1) = f(θ) + ∆f with ∆f ∈ Λ

}
The number ∆f is precisely the winding number. (Note that none of this happens for simply connected
G.) For such f , exp(f) defines a loop in T (obtained by applying the exponential map pointwise). Under
the exponential map, the functions constant at Λ will be send to the trivial loop. We will often use a lift
of exp(f) ∈ LT to an element f ∈ L̃T .

Observe that the diffeomorphisms of S1 act on the loop group. We will be interested in those central
extensions of the loop group that carry an extension of the action of the diffeomorphism group of S1, or

rather its universal cover ˜Diff+(S1) = {φ : R ∼−→ R : φ(θ + 1) = φ(θ) + 1}. In other words, we have a

commuting diagram

˜Diff+(S1)× LT

��

// LT

��
Diff+(S1)× LT // LT

where LT is some central extension of LT .

Proposition 2.1 ([6]). Central extensions of LT which are invariant under the action of Diff+(S1)
(meaning we can extend its action as above) are classified by symmetric bilinear forms

〈
−,−

〉
on t such

that
〈
Λ,Λ

〉
⊆ Z and

〈
α, α

〉
∈ 2Z for all α ∈ Λ.

2In contrast to the first section, we will identify the domain S1 of our loops with R/Z. Otherwise lots of integrals will
involve copies of 2π.
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Given such an inner product
〈
−,−

〉
, we construct a cocycle giving the central extension as follows:

first, pick a bilinear map B : Λ× Λ −→ Z/2 such that

B(α, α) =

〈
α, α

〉
2

mod 2

The central extension will not depend on a particular choice of B. For example, if αi are basic elements
for Λi (which form a basis for t), we can take

B(αi, αi) =
1

2

〈
αi, αi

〉
B(αi, αj>i) =

〈
αi, αj

〉
B(αi, αj<i) = 0

Whatever B one picks, we always have that (−1)B(−,−) defines a group cocycle on Λ and

B(α, β) +B(β, α) =
〈
α, β

〉
For functions f, g ∈ L̃T , let f̂ , ĝ be their means over the interval [0, 1], i.e. f̂ =

∫ 1

0
dθf(θ) (note that this

makes sense since we can view f as mapping into Rn). We then define

S(f, g) =
1

2

∫ 1

0

dθ
〈
f ′, g

〉
+

1

2

〈
∆f , ĝ

〉
+

1

2

〈
f̂ − f(0),∆g

〉
f ′ =

∂f

∂θ

This resembles the cocycle we defined for ordinary groups, except that now we have the winding numbers
entering in the last two terms. S is bilinear. We then define the cocycle

c(exp(f), exp(g)) = (−1)B(∆f ,∆g)e2πiS(f,g) (2)

Note that this is independent of the chosen representatives f, g: if we add to f a constant α ∈ Λ, then
∆f remains the same and also S(f + α, g) = S(f, g). Also, if we add to g a constant β ∈ Λ the winding
number of g remains the same and S changes by

S(f, β) =
1

2

∫ 1

0

〈
f ′, β

〉
+

1

2

〈
∆f , β

〉
=
〈
∆f , β

〉
∈ Z

So the cocycle is well defined (it is a group cocycle since our group is abelian and it is multiplicative in
each of its entries).

Given this cocycle c, we define a central extension by LT = LT × U(1), with product given by(
exp(f), x

)(
exp(g), y

)
=
(

exp(f + g), xy · c
(

exp(f), exp(g)
))

where exp(f), exp(g) ∈ LT and x, y ∈ U(1). We will suggestively denote this by

exp(f) · exp(g) = c
(

exp(f), exp(g)
)

exp(f + g) (3)

Although the notation does not show it, LT depends on the chosen bilinear form
〈
−,−

〉
.

Lemma 2.2. The central extension LT carries an action of the diffeomorphism group Diff+(S1).

Proof. We first define an action of the universal cover of the diffeomorphism group, i.e. diffeos of the
real line so that φ(θ + 1) = φ(θ) + 1. We define

φ∗(exp(f), x) =
(

exp(φ∗f), e2πi
〈
a(φ,f),∆f

〉
x
)

with

a(φ, f) =
1

2

∫ 1

0

dθφ∗f(θ)− f(θ)

One can check that this gives an action of the universal cover of the diffeomorphism group, which respects
the multiplication in LT (see [5]).
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To check that we get an action of Diff+(S1), we have to check that a full rotation gives the same
result. A rotation over 2πα is given by the diffeomorphism φ(t) = t + α. For α = 1, we see that
φ∗f(θ) = f(θ)+∆f which defines the same element in T upon exponentiation. For the second component,
observe that

a(φ, f) =
1

2

∫ 1

0

dθf(θ + α)− f(θ) =
1

2
α∆f

since f is periodic, except for the constant of ∆f . Taking α = 1, the result follows since
〈
∆f ,∆f

〉
∈ 2Z

by assumption.

Remark 7. This is really a right action by Diff+(S1). To get the left action, we define

φ∗(exp(f), x) = (φ−1)∗(exp(f), x)

2.1.1 Exercise

For the locality of the net we are going to construct, we will need the following:

Lemma 2.3. If exp(f), exp(g) have disjoint support, then exp(f) exp(g) = exp(g) exp(f), or explicitly(
exp(f), x

)(
exp(g), y

)
=
(

exp(g), y
)(

exp(f), x
)

for any x, y ∈ U(1) (the choice of x and y is completely irrelevant).

Prove it. Since you have probably spent some time reading all the stuff up to now, here are some
hints:

• The condition that exp(f) and exp(g) have disjoint support means that exp(f)(x) = 1 whenever
exp(g)(x) 6= 1 (with 1 the unit in the torus group) and vice versa. If f ′ 6= 0, this means that g can
only take values in Λ = exp−1(1).

• The main problem is in computing the integral
∫ 〈

f ′, g
〉
. The integrand is only nonzero on those

intervals I in [0, 1] where g is contant with value in Λ. Also observe that on the boundary of the
interval (where g starts to change, if you pick the interval large enough), f necessarily lies in Λ.

• Use integration by parts.

2.2 Representations of LT
Having found the central extension of LT , we consider its irreducible unitary representations with positive
energy. The idea will be to first look at the connected component of the identity, where the representation
theory is particularly easy.

Let LT 0 be the connected component of the constant loop at the unit element. It consists of those
loops with winding number equal to 0 and can thus be identified with T⊕V , where V is space of functions

f : R −→ Rn f(x+ 1) = f(x) f̂ = 0

The copy of the torus consists of the constant functions, which measure the mean values on the interval
[0, 1]. Note that V is a real vector space. S vanishes on constant functions, so the cocycle 2 vanishes
over the copy of T . We find that mcLT 0 is isomorphic to T ⊕ Ṽ , where Ṽ is the central extension of the
group V defined by the cocycle 2.

It turns out that Ṽ has a very simple representation theory:

Theorem 2.4 ([5], 9.5.10). The group Ṽ has a unique unitary positive energy representation for which
the central element acts nontrivially. It is denoted S(A).

Remark 8. The assumption of positive energy means the following: recall that we had an action of the
diffeomorphism group on LT by automorphism, which restricts to an action on Ṽ . In particular, the
rotations act on Ṽ , so one can form the semidirect product Ṽ o U(1). Positive energy means that the
representation of Ṽ extends to a representation of Ṽ oU(1), where the generator of rotations is a positive
operator.
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Remark 9. Here is (very roughly) how it is constructed: V is a vector space, and the cocycle S is
skew-symmetric on V . One picks a complex structure J compatible with S, i.e. J2 = −1 and S(J−,−)
gives a real metric on V . Now complexify V and let A be the +i-eigenspace of J . Then A carries an
Hermitean metric given by

〈
x, y
〉

= −2iS(x, y), where we take the complex conjugate of x with respect
to the complex structure J .

We then take the symmetric algebra S(A), which carries an inner product induced by the one on A.
Ŝ(A) is the completion with respect to this inner product. It carries some nontrivial action of Ṽ . For
more details, check the book by Pressley and Segal [5].

Assuming this, the following result follows immediately

Proposition 2.5. The irreducible unitary representations of LT 0 = T ⊕ Ṽ are given by Ŝ(A)α, where
α ∈ Hom(T,U(1)). As a space, it is given by Ŝ(A) with the action by Ṽ as before, while the extra copy
of T acts via α.

Proof. The extra copy of T commutes with Ṽ , so to get irreducible representations, it should act by
scalars. Since the action is required to be unitary, this means that it is specified by α ∈ Hom(T,U(1)).

Remark 10. Such α ∈ Hom(T,U(1)) corresponds to an element in the dual lattice Λ∗ = {α :
〈
α, β

〉
∈

Z for all β ∈ Λ}. Indeed, given such an element, we send exp(x) to e2πi
〈
x,α
〉

. When x ∈ Λ this gives 1,
so it is well defined.

Remark 11. Actually, the lattice Λ itself also has a nice description: it is precisely the collection of
Lie group homomorphisms Hom(U(1), T ). Indeed, such a Lie group homomorphism defines a map of

Lie algebras u(1) = R f−→ t, which is uniquely defined by f(1). We take as our model for U(1) the

quotient R/Z. The fact that f is the differential of a map U(1) −→ T then means that f(1) ∈ Λ, so

Hom(U(1), T ) ' Λ.
By the way, observe that a homomorphism U(1) −→ T has precisely the winding number it corresponds

to in Λ.

Finally, we extend these irreducible unitary positive energy representations of LT 0 to all of LT 0.

Proposition 2.6. The irreducible positive energy representations of L̃T are given by

Hλ =
⊕

α∈λ+Λ

S(A)α

An element with winding number ∆f ∈ Λ maps S(A)α into S(A)α+∆f
.

Proof. This is a bit more delicate, but here is the idea. By the previous remark, we have that for each
winding number α ∈ Λ, we have a particular choice of loop in T with winding number α: we pick the
homomorphism U(1)

α−→ T corresponding to it. Then for any element in LT 0, we can conjugate it by

U(1)
α−→ T . For example, we can take a constant loop with value exp(x) ∈ T . Then one can easily

compute that

exp(x)α = e2πi
〈
x,α
〉
α exp(x)

in LT (using notation 2.1).

This means that if exp(x) acts on S(A)β by e2πi
〈
x,β
〉
, then it acts on α ·S(A)β (i.e. whatever we get

by applying the loop α to vectors in S(A)) by e2πi
〈
x,α+β

〉
.

So we see that the basic elements with nontrivial winding number change the element in Λ∗ by which
the constant loops act, essentially by adding the winding number. Then we obtain an irreducible module
by summing over all α ∈ λ+ Λ, as in the proposition.

We thus see that the number of irreps of LT is equal to |Λ∗/Λ|, the cardinality of the dual lattice
divided by the lattice. This is always finite, so there is a finite number of irreducible positive energy
representations of LT .
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It turns out that we have a projective action U of the diffeomorphism group Diff+(S1) on each Hλ

(which gives an actual unitary representation for Möbius transformations), with the property that

φ∗(exp(f), x) = U(φ)(exp(f), x)U(φ)∗

In the end we can conclude:

Theorem 2.7. Let all elements of LT act on H0 =
⊕

α∈Λ S(A)α. Then we define a net A by

A(I) = {(exp(f), x) ∈ LT : supp(exp(f)) ⊆ I}′′

This defines a conformal net, with vacuum vector the element 1 ∈ S(A)0 (which was a tensor algebra).

The locality follows from the exercise, since exp(f) exp(g) = exp(g) exp(f) if exp(f) and exp(g) have
disjoint support.
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