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Usually the discussion of a new mathematical object starts with its definition and some basic
properties. However, in this case a straightforward definition of a quantum group is hard to give.
Nevertheless, we can at this point say the following: a quantum group is a special type of Hopf
algebra, namely a deformation of a Lie group or a Lie algebra.

Recall the Lie algebra sl(2). A basic description is the set of 2x2-matrices with zero trace, i.e.

sl(2) =

{(
a b
c d

)
: a+ d = 0

}
.

The Lie bracket is the standard commutator bracket, [A,B] = AB −BA. A more useful point of
view is to consider sl(2) = span {E,F,H}, where E, F and H are given by

E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
.

It is actually not that important what E, F and H look like explicitly; the most important thing
to remember is their Lie brackets:

[H,E] = 2E, [H,F ] = −2F, [E,F ] = H.

It is well-known that for every positive integer n, there is exactly one n-dimensional irreducible
representation of sl(2).

Picture of this representation when n = 5: write five dots in a row for the vector space’s basis
elements. E shifts to the right and multiplies by 1, 2, 3 and 4 respectively, while F shifts to the left
and multiplies by 4, 3, 2 and 1 respectively. H merely multiplies by −4, −2, 0, 2 and 4 respectively.

One can check that the commutation relations hold. For example, considering the relation [E,F ] =
H at the fourth basis element we see that

[E,F ] = EF − FE = 2 · 3− 1 · 4 = 2 = H,

as required.

We will now consider something called Quantum sl(2). The idea is to introduce a formal variable
q used to deform sl(2). As q → 1, one should recover the “classical situation”, i.e. that without
deformation. Let n ∈ N be given. Then [n]q denotes the q-quantum analogon of n. It is defined
by

[n]q :=
qn − q−n

q − q−1
= q−n+1 + q−n+3 + . . .+ qn−3 + qn−1.

1Any mistakes or inaccuracies are very likely to be mine, not André’s.
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The sum on the right has n terms, so that indeed as q → 1 we get [n]q → n. Some examples of
[n]q can be found below.

n = 1 : [1]q = 1,

n = 2 : [2]q = q−1 + q,

n = 3 : [3]q = q−2 + 1 + q2,

n = 4 : [4]q = q−3 + q−1 + q + q3.

Now, to get (a representation of) Quantum sl(2), one again has similar operators E and F , but
uses a new operator K = qH instead of H. This is due to the fact that one wants algebraic bracket
relations between these operators. To get the information of H back from K, one has to take its
“derivative” in the direction of q. At any rate, in the n = 5 example, one merely replaces every
natural number used for E and F by its q-quantum analogon. K now merely multiplies by q−4,
q−2, 1, q2 and q4 respectively. Do similar Lie bracket relations hold? Indeed, we have:

Exercise. Let m,n ∈ N be given. Show that [n]q[m]q − [n− 1]q[m+ 1]q = [m− n+ 1]q.

One can furthermore check that [E,F ] = K−K−1

q−q−1 , or just [H]q, but this is not an algebraic relation.

Note that one can take the vector space of the representation as merely over C, or C(q) if q is con-
sidered to be formal. Another choice is to just use Z[q, q−1]. If one wants to consider q as lying in
a formal neighborhood of 1, a fourth choice is to use the parameter h given by q = eh and use C[[h]].

In this context, quantum means we are dealing with commutative spaces which are replaced by
non-commutative spaces through deformation. A general idea of non-commutative geometry is
that a space X should contain exactly as much information as its algebra of functions X → C.
The functions one considers depends on the context: when X is a topological space, one uses
continuous functions, when X is an algebraic variety, one uses algebraic functions, et cetera. The
steps one takes can roughly be described as follows: take a space X, take its commutative algebra
of functions X → C and then lose commutativity to get merely an associative algebra.

Indeed, given a Lie group G, we get an associative algebra (A,µ, η) where µ comes from the
multiplication on G and η denotes evaluation at the unit. The structure of G gives rise to the
following maps through pullback:

G  (A,µ, η),

m : G×G→ G  ∆ : A→ A⊗A coproduct,

e : {∗} → G  ε : A→ C counit,

(·)−1 : G→ G  s : A→ A antipode.

Here and beyond we tacitly assume the base field is C. This leads us to consider the following
algebraic structures, called Hopf algebras.

Definition. A Hopf algebra is a vector space A with an associative product µ, a unit η, a
co-associative product ∆, a counit ε and an antipode s (satisfying various axioms).

Here we have

µ :A⊗A→ A,

η :C→ A,

∆ :A→ A⊗A,
ε :A→ C,
s :A→ A.
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Note the symmetry between the axioms: if A is a Hopf algebra, then its dual A∗ is as well (sym-
metry between µ, η and ∆, ε).

An example of a Hopf algebra is the following: let g be a (simple) Lie algebra. Then U(g), the
universal enveloping associative algebra of g, is a Hopf algebra. As the above maps are homomor-
phisms, it suffices to describe them on generators x ∈ g of g. We have ∆(x) = x ⊗ 1 + 1 ⊗ x,
ε(x) = 0, s(x) = −x.

This then leads to Uq(g), the quantum groups as 1-parameter deformations in the moduli space
of Hopf algebras. An alternative way is to let G be an algebraic group, consider C[G], the space
of algebraic functions G → C (which is an commutative or associative algebra), and then obtain
a commutative Hopf algebra. In fact, this gives the dual of Uq(g), when g is G’s Lie algebra.
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