Quantum groups, talk 1

Joost Nuiten

October 8, 2012

1 SL(2) and the ordinary plane

1.1 In terms of spaces
Recall the construction of the matrix groups GLs and SLy acting on the plane:

e We define the set of all 2 x 2 matrices by

_ a b 4 a4
= {(2 1) enden

There is a multiplication and a unit
/JZMQXMQ%MQ ﬂ:*%Mg

As functions from/to A%, these are polynomials in terms of the coordinates a, ...,d. There is also
a function det on Ms, equal to ad — bc in coordinates, so also a polynomial.

e We can define the space of invertible matrices by
GLy = {(A,t) € My x Al det(A)t — 1 =0}

With inversion:
a b 1 (d b\ 1 d —b
(o n)omae (L ) p=e(f )

SLy = {A € My|det(A) — 1 =0}
e Action on plane
My x A2 — A2
1.2 In terms of algebras

There is a functor
Spaces;” —=> comm. k-Alg

which takes a space X to the algebra of global (regular) functions on X. We have
e in all previous diagrams, the arrows reverse
e products of spaces corresponds to coproduct (=tensor product) of commutative k-algebras
e zero sets of functions correspond to quotients of k-algebras by these functions.

For example, we have that A" < k[z1,...,2,]. We interpret each of the x; as the i-th coordinate

function.
Then:

M(2) ~ kla, b, c,d] GL(2) ~ k[a,b,c,d, t]/((ad—bc)t—1) SL(2) = kla,b,c,d]/(ad—bc—1)

Note that the determinant is a function on My, so it is an element of M (2) (unl. ad — be).



Now, multiplication induces a map A : M(2) = kla, b, ¢,d] —> M(2)®? = k[a, .., d] @ k|a, .., d] given

by
Al @ b\ [ Aa A\ [(a b ® a b\ [ a®a+b®c a®@b+b®d
c d) \NAc Ad) \c d c d) \c®a+d®c cb+dd
The unit gives a map € : M (2) = k[a, b, ¢,d] —> k given by
a b\ (10
¢ d) "o 1

All maps are extended to be algebra maps.
For GL(2), we extend the above as:

Alt)=t®t (rest as for M(2))
e(t)y =1 (rest as for M(2))
a b 1 d =b 1
(¢ )=t (L D)
d b .
= (t ( ¢ a ) ,ad — be) extend as antihom.

For SL(2) it is just the maps for M (2), together with inversion

s( a b ) = ( d —b ) extend as antihom.
c d —c a

We have to check that the above maps respect the relations we impose on GL(2),SL(2), e.g. A(t) -
A(ad — bc) = 1® 1 ete. This follows from the facts that

A(det) = A(ad — be) = det ® det e(det) = e(ad — bc) =1
which basically say that the determinant is multiplicative and det(id) = 1.
Proposition 1.1. M (2) is a bialgebra and GL(2), SL(2) are Hopf algebras.

Proof. Note that the coalgebra maps are maps of algebras by construction, so we only have to check
that A, € give a coalgebra. This is basically the fact that matrix multiplication is associative (as well as
taking tensor products) and has id as its unit (and that 1 is also the unit element for tensoring with k).
For example, we have that

a b\ [ a b a by \ [ a b 1 0\ (a b
(1®6)A<c d>_<cl d1)®6(02 d2>_<c d>®<0 1)_<c d)

Action of e.g. GL(2) on the plane: map GLy x A? —> A? so that
'\ (a b x\ [ ax+by
y ] \c d y )\ cx+dy

Dually, this action determines a map p : k[z’,y'] —> GL(2) ® k[z,y] given by

z\_ [ a®@r+b®y
Py )T\ ecoatde y )
Proposition 1.2. p establishes k[x,y] as a left M(2)/GL(2)/SL(2)-comodule.

Proof. Similar proof as for showing GL(2) to be a Hopf algebra: essentially this is just matrix multipli-
cation. O



Definition 1. Let H be a bialgebra, A an algebra and A —> H ® A an algebra homomorphism. Then
A is a left H comodule if the following diagrams commute

A—" S HeA A—>H®A
p\L J}@p \\Le@l
H®Aﬁ®1H®H®A A

2 Quantum plane and quantum groups

2.1 Quantum plane
Quantum plane
kq[l',y] = k{xay}/(y:ﬂ - qu) = k < z,Y,rY,Yx, ... > /(ylL’ - qu)
Rules for doing computations in this algebra:
o yal =g 'y

e Set (ng) = % =1+qg+..+q¢" tand (n)y = (n)g...(2)4(1)4 for n > 0. Finally, set

Then (Z)q = (nfk)q and we have the ¢-Pascal identity

(n) (n — 1> qk (n — 1) <n — 1) q"_k (n — 1)
k q k—1 q k q k q k—1 q
e Binomial expansion:

(z+y)" = Zn: (Z)qwky”"“

k=0

2.2 M,(2)
From now on, assume g2 # —1!!!!
e 4 generators

e action on quantum plane

p:kglr,y] —> My(2) ® kylz, 9] p( z ) = ((cl Z>®(z): ( ?gfisgﬁ

is again an element of the quantum plane.

e transposes

ol — @ enga o( )= (55)e ()= (0r )

Proposition 2.1. The k-algebra that has these properties is generated by a,b, ¢, d subject to the following
6 relations

ba = qab db = qbd
ca = qac dec = qed
bec = cb ad —da = (¢! — q)bc

We denote it M,(2).



Proof.
plaz'y') = p(y'z") = a®@z+by)(cRr+dey)=(c@r+dRy)(a®Rz+b®yY).
Comparing the 22, zy- and y?-terms gives
qac = ca qbd = db ¢?be + qad = qda + cb
For p?" we find:
qab = ba qed = de gad + ¢*cb = gda + be
Subtraction gives that (g% + 1)bc = (q? + 1)cb, so bc = cb and then the last relation follows. O

As an algebra, it is Noetherian (not sure if that is important).
Our quantum matrices form a ‘quantum monoid’, i.e. a bialgebra:

Proposition 2.2. M,(2) forms a bialgebra under the familiar operations
a b a b a b
A(C d)_<c d)®(c d>
10\ (10
‘Ao 1 )7 \o1

Proof. Note that the coalgebra maps are maps of algebras by construction, so we only have to check that
A and € give a coalgebra structure. This is basically the fact that matrix multiplication is associative (as
well as taking tensor products) and has id as its unit (and that 1 is also the unit element for tensoring
with k).

So it suffices to check that A and e are actually well-defined, i.e. that they respect the six relations
we have imposed on a,b,c,d in the construction of M,(2). This can be done by a bunch of tedious
computations.

Maybe more conceptual: the proof of the previous proposition shows the following: if x,y are two

b ) so that

elements of any ring such that yx = gxy, and we have any matrix ( Z d

'\ (a b ol @
y ) \c d Y
satisfy 'z’ = qa'y’ (and the same with the transpose of the above matrix), then a,b, ¢, d satisfy the six

. " . . b
relations of proposition 2.1. We apply this to the matrix A ( Z d ): we have that

(v )= (58 36 )= (5)-(Ca)e(ta)=(7)-(2a)=()

satisfy the quantum plane relation y'z’ = gz’y’: indeed, by definition of M,(2) these relations hold for
p(x), p(y), so they will also hold if we multiply by a matrix in M;(2) one more time. But this means that
A(a), A(b), ... satisfy the above 6 relations, so we see that A indeed preserves the six relations imposed
in the construction of M,(2).

For € a computation immediately shows that it preserves all 6 relations. O

Maybe should talk about R-points, that simplifies some of the proofs?

2.3 SL,(2) and GL,(2)
We define SL,(2) and GL,(2) similar to the classical case: first, we need a quantum determinant

Definition 2. The quantum determinant is given by
det, = ad — ¢ 'bc = da — gbc € M,(2).

It is a central element.



To some extend this is a canonical element: if ¢ not a root of unity, then the center of M,(2) is
generated by det,.
We define the quantum groups of matrices as before:

GL,(2) = M,(2) ® k[t)/(det ot — 1)
SLy(2) = M,(2)/(det, — 1)
and we also define A and € as in the classical case. Furthermore set

s(<“ Z),t):(t(dlc _gb>,detq) GL,(2)

¢ q
s< o’ ) - ( _q‘flc b ) SL,(2)
Proposition 2.3. GL,(2) and SLy(2) form a Hopf algebra under these maps.
Exercise: Show that the quantum determinant is multiplicative, i.e.
A(det ;) = dety ® det e(det4) = 1.
Using this and the fact that A and e are well defined on M,, show that A and e are well defined on
SLq(2) and GL4(2).

Proof. Tt is easily checked that A and € give a bialgebra structure on GL,(2),SL,(2) (as for M,(2)). A
computation shows that s is a well-defined map.
To check that s is an antipode (e.g. for SL,(2)), we have

wsona (s g)=n( e W) ()

- d®a—qgb®c db—qgb®d
T g le®ata®e —qgle@b+amd

_ dety O
B 0 det,
_ a b
“\ ¢ 4a

So we have Hopf-algebras, i.e. quantum groups. Note that these Hopf-algebras are not as trivial as
their classical analogues: for instance, for SL4(2), we have that

of a b\ [ a ¢
scdtiCd

so whenever ¢% # 1, applying ‘inversion’ twice will not give the identity.

O

Finally, we have that M,(2), GL,(2) and SL,(2) act on the quantum plane: we just set

ol — @ erisa o 2)= (55 e (1) (rerrten)

By our assumption on My(2), this is a ring homomorphism. Moreover, we have that
(AL op=(1®p)op:kylz,y) —> My(2) ® My(2) ® kqlz, y]
and
(e@1D)p=1:k4z,y] —> kqlz,y]
(which again follows pretty much from matrix multiplication).

But now SL4(2) is a quotient algebra of M,(2) and the quotient repsects the coalgebra structure.
Hence

Proposition 2.4. The above co-action of My(2) on the quantum plane restricts to an action of SLy(2)
on the quantum plane, given by the same formulas.
Also, GLq(2) acts naturally on the quantum plane.
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