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1 SL(2) and the ordinary plane

1.1 In terms of spaces

Recall the construction of the matrix groups GL2 and SL2 acting on the plane:

• We define the set of all 2× 2 matrices by

M2 =

{(
a b
c d

)
∈ A4

}
' A4

There is a multiplication and a unit

µ : M2 ×M2 > M2 η : ∗ > M2

As functions from/to A4, these are polynomials in terms of the coordinates a, ..., d. There is also
a function det on M2, equal to ad− bc in coordinates, so also a polynomial.

• We can define the space of invertible matrices by

GL2 = {(A, t) ∈M2 × A
∣∣det(A)t− 1 = 0}

With inversion:

(

(
a b
c d

)
, t) 7→ (

1

det

(
d −b
−c a

)
,

1

t
) = (t

(
d −b
−c a

)
, ad− bc)

•
SL2 = {A ∈M2

∣∣det(A)− 1 = 0}

• Action on plane
M2 × A2 > A2

1.2 In terms of algebras

There is a functor
Spacesopk > comm. k-Alg

which takes a space X to the algebra of global (regular) functions on X. We have

• in all previous diagrams, the arrows reverse

• products of spaces corresponds to coproduct (=tensor product) of commutative k-algebras

• zero sets of functions correspond to quotients of k-algebras by these functions.

For example, we have that An ↔ k[x1, ..., xn]. We interpret each of the xi as the i-th coordinate
function.

Then:

M(2) ' k[a, b, c, d] GL(2) ' k[a, b, c, d, t]/((ad−bc)t−1) SL(2) = k[a, b, c, d]/(ad−bc−1)

Note that the determinant is a function on M2, so it is an element of M(2) (nl. ad− bc).
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Now, multiplication induces a map ∆ : M(2) = k[a, b, c, d] > M(2)⊗2 = k[a, .., d]⊗ k[a, .., d] given
by

∆

(
a b
c d

)
=

(
∆a ∆b
∆c ∆d

)
=

(
a b
c d

)
⊗
(
a b
c d

)
=

(
a⊗ a+ b⊗ c a⊗ b+ b⊗ d
c⊗ a+ d⊗ c c⊗ b+ d⊗ d

)
The unit gives a map ε : M(2) = k[a, b, c, d] > k given by

ε

(
a b
c d

)
=

(
1 0
0 1

)
All maps are extended to be algebra maps.

For GL(2), we extend the above as:

∆(t) = t⊗ t (rest as for M(2))

ε(t) = 1 (rest as for M(2))

s(

(
a b
c d

)
, t) = (

1

det

(
d −b
−c a

)
,

1

t
)

= (t

(
d −b
−c a

)
, ad− bc) extend as antihom.

For SL(2) it is just the maps for M(2), together with inversion

s

(
a b
c d

)
=

(
d −b
−c a

)
extend as antihom.

We have to check that the above maps respect the relations we impose on GL(2), SL(2), e.g. ∆(t) ·
∆(ad− bc) = 1⊗ 1 etc. This follows from the facts that

∆(det) = ∆(ad− bc) = det⊗det ε(det) = ε(ad− bc) = 1

which basically say that the determinant is multiplicative and det(id) = 1.

Proposition 1.1. M(2) is a bialgebra and GL(2), SL(2) are Hopf algebras.

Proof. Note that the coalgebra maps are maps of algebras by construction, so we only have to check
that ∆, ε give a coalgebra. This is basically the fact that matrix multiplication is associative (as well as
taking tensor products) and has id as its unit (and that 1 is also the unit element for tensoring with k).
For example, we have that

(1⊗ ε)∆
(
a b
c d

)
=

(
a1 b1
c1 d1

)
⊗ ε
(
a2 b2
c2 d2

)
=

(
a b
c d

)
⊗
(

1 0
0 1

)
=

(
a b
c d

)

Action of e.g. GL(2) on the plane: map GL2 × A2 > A2 so that(
x′

y′

)
=

(
a b
c d

)(
x
y

)
=

(
ax+ by
cx+ dy

)
Dually, this action determines a map ρ : k[x′, y′] > GL(2)⊗ k[x, y] given by

ρ

(
x
y

)
=

(
a⊗ x+ b⊗ y
c⊗ x+ d⊗ y

)
.

Proposition 1.2. ρ establishes k[x, y] as a left M(2)/GL(2)/SL(2)-comodule.

Proof. Similar proof as for showing GL(2) to be a Hopf algebra: essentially this is just matrix multipli-
cation.
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Definition 1. Let H be a bialgebra, A an algebra and A > H ⊗A an algebra homomorphism. Then
A is a left H comodule if the following diagrams commute

A
ρ

> H ⊗A A > H ⊗A

H ⊗A

ρ

∨
∆⊗1
> H ⊗H ⊗A

∨
1⊗ ρ

A

ε⊗1

∨1 >

2 Quantum plane and quantum groups

2.1 Quantum plane

Quantum plane

kq[x, y] = k{x, y}/(yx− qxy) = k < x, y, xy, yx, ... > /(yx− qxy).

Rules for doing computations in this algebra:

• yjxi = qijxiyj

• Set (nq) = qn−1
q−1 = 1 + q + ...+ qn−1 and (n)!q = (n)q...(2)q(1)q for n > 0. Finally, set(

n

k

)
q

=
(n)!q

(k)!q(n− k)!q
.

Then
(
n
k

)
q

=
(
n

n−k
)
q

and we have the q-Pascal identity(
n

k

)
q

=

(
n− 1

k − 1

)
q

+ qk
(
n− 1

k

)
q

=

(
n− 1

k

)
q

+ qn−k
(
n− 1

k − 1

)
q

.

• Binomial expansion:

(x+ y)n =

n∑
k=0

(
n

k

)
q

xkyn−k

2.2 Mq(2)

From now on, assume q2 6= −1!!!!

• 4 generators

• action on quantum plane

ρ : kq[x, y] > Mq(2)⊗ kq[x, y] ρ

(
x
y

)
=

(
a b
c d

)
⊗
(
x
y

)
=

(
a⊗ x+ b⊗ y
c⊗ x+ d⊗ y

)
is again an element of the quantum plane.

• transposes

ρT : kq[x, y] > Mq(2)⊗ kq[x, y] ρ

(
x
y

)
=

(
a c
b d

)
⊗
(
x
y

)
=

(
a⊗ x+ c⊗ y
b⊗ x+ d⊗ y

)
Proposition 2.1. The k-algebra that has these properties is generated by a, b, c, d subject to the following
6 relations

ba = qab db = qbd

ca = qac dc = qcd

bc = cb ad− da = (q−1 − q)bc

We denote it Mq(2).
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Proof.

ρ(qx′y′) = ρ(y′x′) ⇒ q(a⊗ x+ b⊗ y)(c⊗ x+ d⊗ y) = (c⊗ x+ d⊗ y)(a⊗ x+ b⊗ y).

Comparing the x2-, xy- and y2-terms gives

qac = ca qbd = db q2bc+ qad = qda+ cb

For ρT we find:
qab = ba qcd = dc qad+ q2cb = qda+ bc

Subtraction gives that (q2 + 1)bc = (q2 + 1)cb, so bc = cb and then the last relation follows.

As an algebra, it is Noetherian (not sure if that is important).
Our quantum matrices form a ‘quantum monoid’, i.e. a bialgebra:

Proposition 2.2. Mq(2) forms a bialgebra under the familiar operations

∆

(
a b
c d

)
=

(
a b
c d

)
⊗
(
a b
c d

)
ε

(
1 0
0 1

)
=

(
1 0
0 1

)
Proof. Note that the coalgebra maps are maps of algebras by construction, so we only have to check that
∆ and ε give a coalgebra structure. This is basically the fact that matrix multiplication is associative (as
well as taking tensor products) and has id as its unit (and that 1 is also the unit element for tensoring
with k).

So it suffices to check that ∆ and ε are actually well-defined, i.e. that they respect the six relations
we have imposed on a, b, c, d in the construction of Mq(2). This can be done by a bunch of tedious
computations.

Maybe more conceptual: the proof of the previous proposition shows the following: if x, y are two

elements of any ring such that yx = qxy, and we have any matrix

(
a b
c d

)
so that

(
x′

y′

)
=

(
a b
c d

)
⊗
(
x
y

)
satisfy y′x′ = qx′y′ (and the same with the transpose of the above matrix), then a, b, c, d satisfy the six

relations of proposition 2.1. We apply this to the matrix ∆

(
a b
c d

)
: we have that

(
x′

y′

)
=

(
∆(a) ∆(b)
∆(c) ∆(d)

)
⊗
(
x
y

)
=

(
a b
c d

)
⊗
(
a b
c d

)
⊗
(
x
y

)
=

(
a b
c d

)
⊗
(
ρ(x)
ρ(y)

)
satisfy the quantum plane relation y′x′ = qx′y′: indeed, by definition of Mq(2) these relations hold for
ρ(x), ρ(y), so they will also hold if we multiply by a matrix in Mq(2) one more time. But this means that
∆(a),∆(b), ... satisfy the above 6 relations, so we see that ∆ indeed preserves the six relations imposed
in the construction of Mq(2).

For ε a computation immediately shows that it preserves all 6 relations.

Maybe should talk about R-points, that simplifies some of the proofs?

2.3 SLq(2) and GLq(2)

We define SLq(2) and GLq(2) similar to the classical case: first, we need a quantum determinant

Definition 2. The quantum determinant is given by

det q = ad− q−1bc = da− qbc ∈Mq(2).

It is a central element.
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To some extend this is a canonical element: if q not a root of unity, then the center of Mq(2) is
generated by detq.

We define the quantum groups of matrices as before:

GLq(2) = Mq(2)⊗ k[t]/(det qt− 1)

SLq(2) = Mq(2)/(det q − 1)

and we also define ∆ and ε as in the classical case. Furthermore set

s(

(
a b
c d

)
, t) = (t

(
d −qb

−q−1c a

)
,det q) GLq(2)

s

(
a b
c d

)
=

(
d −qb

−q−1c a

)
SLq(2)

Proposition 2.3. GLq(2) and SLq(2) form a Hopf algebra under these maps.

Exercise: Show that the quantum determinant is multiplicative, i.e.

∆(det q) = det q ⊗ det q ε(det q) = 1.

Using this and the fact that ∆ and ε are well defined on M2, show that ∆ and ε are well defined on
SLq(2) and GLq(2).

Proof. It is easily checked that ∆ and ε give a bialgebra structure on GLq(2), SLq(2) (as for Mq(2)). A
computation shows that s is a well-defined map.

To check that s is an antipode (e.g. for SLq(2)), we have

µ(s⊗ 1)∆

(
a b
c d

)
= µ

(
d −qb

−q−1c a

)
⊗
(
a b
c d

)
= µ

(
d⊗ a− qb⊗ c d⊗ b− qb⊗ d
−q−1c⊗ a+ a⊗ c −q−1c⊗ b+ a⊗ d

)
=

(
detq 0

0 detq

)
= ηε

(
a b
c d

)

So we have Hopf-algebras, i.e. quantum groups. Note that these Hopf-algebras are not as trivial as
their classical analogues: for instance, for SLq(2), we have that

s2

(
a b
c d

)
=

(
a q2b
q2c d

)
so whenever q2 6= 1, applying ‘inversion’ twice will not give the identity.

Finally, we have that Mq(2), GLq(2) and SLq(2) act on the quantum plane: we just set

ρ : kq[x, y] > Mq(2)⊗ kq[x, y] ρ

(
x
y

)
=

(
a b
c d

)
⊗
(
x
y

)
=

(
a⊗ x+ b⊗ y
c⊗ x+ d⊗ y

)
By our assumption on Mq(2), this is a ring homomorphism. Moreover, we have that

(∆⊗ 1) ◦ ρ = (1⊗ ρ) ◦ ρ : kq[x, y] > Mq(2)⊗Mq(2)⊗ kq[x, y]

and
(ε⊗ 1)ρ = 1 : kq[x, y] > kq[x, y]

(which again follows pretty much from matrix multiplication).
But now SLq(2) is a quotient algebra of Mq(2) and the quotient repsects the coalgebra structure.

Hence

Proposition 2.4. The above co-action of Mq(2) on the quantum plane restricts to an action of SLq(2)
on the quantum plane, given by the same formulas.

Also, GLq(2) acts naturally on the quantum plane.
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