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Abstract

In this notes we first review the construction of the Yang Baxter equa-
tion in a pedagogical way. The monodromy matrix is introduced, along
with the proof of the RTT=TTR relation. From these results we intro-
duce some simple notions of integrability and the connection between the
6-vertex model and the XXZ model. Then we review the construction of
a non-trivial faithful representation of the braid group by means of the
Boltzmann weights R and the Yang Baxter equation. Finally we briefly
introduce the Yang Baxter algebra, it’s co-product and it’s adjoint repre-
sentation.

1 Notation

Figure 1: Row of the 6-vertex model lattice, with auxiliary space Va and vertical
spaces V1,.. VL

First we introduce the notation that will be used through out the presen-
tation, which will be mostly based on [1] and [2]. As was previously seen, we
divided the lattice of the six vertex model into rows (recall Figure 1). The vector
spaces corresponding to the vertical states will be denoted by V1,..., VL. The
tensor product of these L vertical spaces will be called the “quantum space”
and will be denoted as H(L) = V1 ⊗ V2 ⊗ ...⊗ VL, while the horizontal space Va
will be called the “auxiliary space”.
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As we have seen in previous presentations, a Boltzmann weight R will be
associated to each vertex of the lattice. In the notation used in this text the
weight of the i-th vertex will be represented by using the notation illustrated in
Figure 2.

Figure 2: Notation for the Boltzmann weight of the i-th vertex

When R is accompanied with 2 subscripts, for example in Rai, the subscripts
a and i are indicating the vector spaces in which R is acting on; in this case,
the auxiliary space Va and the vertical space Vi. In this way, we should think
of Rai as an operator acting in the following way:

Rai : Va ⊗ Vi → Va ⊗ Vi
When R has 4 indexes, for instance in R

µi+1βi
µiαi , these indexes are labels for

the basis vectors of the spaces R is acting on. In the case of the six vertex model
we know that these indexes can take only two values: + or -.

Previously we defined the transfer matrix t as setting up the evolution in
between rows; by acting on the lower vertical states |α〉, t produces the vertical
states |β〉 (see Figure 1). In the index notation the transfer matrix will be given
by:

〈β| t |α〉 =
∑
µ′s

Rµ1 βL
µL αL

RµL βL−1
µL−1 αL−1

· · ·Rµ3 β2
µ2 α2

Rµ2 β1
µ1 α1

(1)

where we see that we are summing over all possible horizontal states, and
where the periodic boundary condition (namely µL+1 = µ1) is also taken into
account.

Using the subscript notation for R this expression can be written as:

t = tra [Ra LRa L−1 · · ·Ra 2Ra 1] (2)

where we see that the periodic boundary condition is imposed by means of
the trace over the auxiliary space.
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2 The Yang Baxter Equation

Once the transfer matrix was introduced, we proceeded to study under what
circumstances 2 different transfer matrices commute. For this we will consider
transfer matrices t and t′, with auxiliary spaces Va and Vb, and with correspond-
ing Boltzmann weights R and R′ (in principle R and R′ are not necessarily the
same).

Using the definition of the transfer matrix we see that tt′ and t′t can be
written in the following way:

t t′ = tra×b [Ra LR
′
b L · · ·Ra 1R

′
b 1] (3)

t′ t = tra×b [R′b LRa L · · ·R′b 1Ra 1] (4)

where we used the fact that Boltzmann weights with different auxiliary
spaces, acting on different vertical spaces, commute.

In order to get a better grasp of what is happening, we will represent these
equations graphically as seen in Figure 3.

Figure 3: Graphical representation of Equations (3) and (4), the Boltzmann
weights of t and t′ are represented by black and red dots respectively

Equations (3) and (4) are equal if and only if there exist an invertible matrix
Ma b, such that:

R′b iRa i = Ma bRa iR
′
b iMa b

−1 ∀i = 1, ..., L (5)

It is easy to check that by substituting this equation into (4) we get (3).
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In order to represent graphically what this equation is doing, we will first
introduce a graphical notation for Ma b and it’s inverse (see Figure 4).

Figure 4: Graphical notation for Ma b and it’s inverse. We see that in this
notation Ma bM

−1
a b = 1

From now on we will assume that the matrix Ma b has the same structure
as a Boltzmann weight acting on Va ⊗ Vb, therefore we will now write it as
Ma b = R′′′a b. Acting with R′′′a b on the right at both sides of equation (5), we
finally get:

R′b iRa iR
′′
a b = R′′a bRa iR

′
b i (6)

This equation is known as the Yang Baxter equation. The graphical version
of this expression is shown in Figure 5, where we see that moving R′′′a b from one
side of the i-th vertical line to the other, is always accompanied by a switch in
the position of the Boltzmann weights of the vertical space Vi.

Figure 5: Graphical representation of the Yang Baxter equation

By doing the following changes in notation:

R′′a b → R12 Ra i → R′13 R′b i → R′′23

Va → V1 Vb → V2 Vi → V3

we get the following expression, which is the one most often used in the litera-
ture:
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R12R
′
13R

′′
23 = R′′23R

′
13R12 (7)

To interpret this equation we can think of Rij with i, j ∈ {1, 2, 3} and i 6= j,
as an operator acting on V1 ⊗ V2 ⊗ V3; it will act as a Boltzmann weight on the
spaces Vi and Vj , and as the identity on the remaining vector space.

In index notation, the equation above is written as follows:∑
j1,j2,j3

Rk1k2j1j2
R′
j1k3
i1j3 R

′′j2j3
i2i3 =

∑
j1,j2,j3

R′′
k2k3
j2j3 R

′k1j3
j1i3 R

j1j2
i1i2

So far we have been careful not to assume any particular structure for the
Boltzmann weights R. The reason for this is to illustrate to the reader that the
Yang Baxter equation is not restricted exclusively to the 6-vertex model.

In particular, for the six vertex model the Boltzmann weightR can be written
as a matrix depending on parameters a, b and c:

R(6v) =


a 0 0 0
0 b c 0
0 c b 0
0 0 0 a


were we used the upper indexes of R

µi+1βi
µiαi as labels for the columns and the

lower indexes for the rows of the matrix. Therefore, equation (7) corresponds
to a matrix equation.

Due to the fact that our Boltzmann weights R, R′ and R′′ have this same
structure, we can label them in terms of their parameters:

R = R(6v) (a, b, c) R′ = R(6v) (a′, b′, c′) R′′ = R(6v) (a′′, b′′, c′′)

As was seen in the previous week, the Yang Baxter equation in the case of
the 6-vertex model will correspond to 64 equations that due to symmetries in
the system get reduced to 3 :

ac′a′′ = bc′b′′ + ca′c′′

ab′c′′ = ba′c′′ + cc′b′′

cb′a′′ = ca′b′′ + bc′c′′

From this system of equations we found that:

4 (a, b, c) = 4 (a′, b′, c′) = 4 (a′′, b′′, c′′) (8)

where:

4(a, b, c) =
a2 + b2 − c2

2ab
(9)
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Therefore 4 has to be the same for the 3 matrices, regardless of the partic-
ular choices of a’s, b’s and c’s.

By introducing a parametrization for the different a’s, b’s and c’s, that au-
tomatically satisfies (9) we can describe R in terms of a scaling parameter λ:

a = ρ sinh (λ+ φ)
b = ρ sinh (λ)
c = ρ sinh (φ)
4 = coshφ

As was seen in the previous week, ρ corresponds to an overall scaling and
thus it won’t matter, and φ is fixed in order for 4 to be fixed. By doing this
we can write each Boltzmann weight only in terms of its scaling parameter:

R = R (λ) R′ = R (λ′) R′′ = R (λ′′)

Replacing the parametrization above in the system of equations we found
from the Yang Baxter equation, we find that one of the scaling parameters can
be written in terms of the other 2.

By playing with the notation of the λ’s, the Yang Baxter equation for the
six vertex model, using this parametrization, can be written as:

R12 (λ)R13 (λ+ λ′)R23 (λ′) = R23 (λ′)R13 (λ+ λ′)R12 (λ) (10)

3 The RTT=TTR Relation

We now introduce the concept of monodromy matrix, which we will denote by
T , and is defined as:

T (λ) = Ra LRa L−1 · · ·Ra 2Ra 1 (11)

Due to it’s definition, it is clear that the monodromy matrix is related to
the transfer matrix in the following way:

t (λ) = tra [T (λ)] (12)

From the definition of the monodromy matrix we now proceed to prove what
is called as the RTT=TTR relation.

For this we will abuse the notation a little bit by introducing an index to T ,
in order to make it explicit that Ta corresponds to the monodromy matrix with
auxiliary space Va, while Tb has auxiliary space Vb. From equation (11) we have
that:
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Rab (λ− λ′)Ta (λ)Tb (λ′)

= Rab (λ− λ′)Ra L (λ) · · ·Ra 1 (λ)Rb L (λ′) · · ·Rb 1 (λ′)

= Rab (λ− λ′)Ra L (λ)Rb L (λ′) · · ·Ra 1 (λ)Rb 1 (λ′)

This will be the RTT side of the equation. In order to see graphically what
is going on, we will use pictures once again. The graph that represents the
equation above is shown in Figure 6 a).

Figure 6: Graphical representation of a) the RTT side of the relation. b) result
of using the Yang Baxter equation once. c) TTR side of the relation.

We see that we can apply the Yang Baxter equation once, in order to move
Rab to the right:

Rab (λ− λ′)Ta (λ)Tb (λ′)

= Rb L (λ′)Ra L (λ)Rab (λ− λ′)Ra L−1 (λ)Rb L−1 (λ′) · · ·Ra 1 (λ)Rb 1 (λ′)

Graphically what we have done is to move Rab one place to the right, there-
fore we have to switch the Boltzmann weights of the corresponding vertical line
(recall Figure 5). The result of applying the Yang Baxter equation once is shown
in Figure 6 b).

By applying the Yang Baxter equation several times, we can move Rab to
the right:

Rab (λ− λ′)Ta (λ)Tb (λ′) = Rb L (λ′) · · ·Rb 1 (λ′)Ra L (λ) · · ·Ra 1 (λ)Rab (λ− λ′)

Using (11) once again, we get the TTR side of the relation:
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Rab (λ− λ′)Ta (λ)Tb (λ′) = Tb (λ′)Ta (λ)Rab (λ− λ′) (13)

The TTR side of the equation is illustrated in Figure 6 c), where it is clear
that all Boltzmann weights of Va and Vb of a same vertical line have switched
positions by using the Yang Baxter equation several times.

It is easy to see that Figure 5 and Figures 6 a) and c) are quite similar; the
Yang Baxter equation can be seen as “local” since it only involves one vertical
vector space Vi, while the RTT=TTR can be seen as a “global” relation since it
is related to H(L) = V1⊗V2⊗ ...⊗VL. These 2 equations are very important due
to the fact that they are the basis for the quantum inverse scattering method.

Equation (13) can also be written in index notation in the following way:∑
j1,j2

R (λ− λ′)k1k2j1j2
T (λ)

j1
i1
T (λ′)

j2
i2

=
∑
j1,j2

T (λ′)
k2
j2
T (λ)

k1
j1
R (λ− λ′)j1j2i1i2

From equation (13) we also have that:

Ta (λ)Tb (λ′) = R−1ab (λ− λ′)Tb (λ′)Ta (λ)Rab (λ− λ′)

By applying tra×b on both sides we get:

[t (λ) , t (λ′)] = 0 ∀λ, λ′ (14)

4 Integrability and the XXZ Model

The simplest notion of integrability comes from Liouville’s theorem. This theo-
rem states that if a system with a 2n-dimensional phase space has n functions
Fi such that they have vanishing Poisson brackets:

{Fi, Fj}P.B. = 0 (15)

and the Hamiltonian is one of this functions Fi, then the system can be solved
by quadratures [3].

This theorem is applicable for simple classical systems like the harmonic os-
cillator, etc. For more complicated systems, like the ones seen in this course, the
generalization is not that direct. However, it introduces us to a property shared
by quantum integrable systems: The existence of mutually Poisson commuting
“higher Hamiltonians”, like the ones shown in equation (15) [4].

From equation (14) we see that the commutation of transfer matrices in the
six vertex model, can be seen as the corresponding vanishing Poisson brackets
of higher Hamiltonians. In equation (15) each Fi will correspond to a conserved
quantity, for the case of the six vertex model the equivalence can be seen by
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thinking of the transfer matrix as an “evolution operator” between the horizon-
tal lines of the lattice, in this way any t(λ) will determine a particular evolution
with a corresponding conserved quantity.

Instead of threating t(λ) as the generating functional for conserved charges,
we will use its logarithm. Expanding around λ = 0 we have that:

ln t (λ) =

∞∑
n=0

Jnλ
n (16)

Substituting (16) in (14) we get:

[Jn, Jm] = 0 (17)

This expansion coefficients Jn should be interpreted as conserved densities
[2]. This conserved densities then can be used to solve the system, provided
we have enough of them. As a trivial check we see that from their definition,
the coefficients Jn have no functional dependence on the spectral parameter λ,
and therefore do not depend directly on the parametrization, which is what is
expected for physical quantities.

As an introduction to the hand-in exercise of this week we will mention the
results for the first 2 conserved densities since they are of considerable impor-
tance.

The first conserved density will be given by:

J0 = ln t (0)

Using the definition of the monodromy matrix, the R matrix of the six
vertex model and the parametrization introduced above, it can be shown that
the action of eJ0 on the vertical states |α〉 = |α1, · · · , αL〉 is given by:

eJ0 |α〉 = t (0) |α1, · · · , αL〉 = c0
L |αL, α1, · · · , αL−1〉

From this we conclude that J0 will be related to the momentum operator
since the momentum operator is the generator of translations, and basically, the
equation above corresponds to a translation of all the states one site to the right
[1].

For the second conserved density the result is that:

J1 =
d ln t (λ)

dλ

∣∣∣∣
λ=0

= Const.+ Const.

L∑
i=1

[
σxj σ

x
j+1 + σyj σ

y
j+1 + ∆σzjσ

z
j+1

]
(18)

Quite surprisingly the expression on the right is no other than the Hamil-
tonian of the XXZ Hamiltonian [1]. This implies that all higher conserved
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quantities constructed in this way will be conserved charges for the XXZ model.

The appearance of the XXZ Hamiltonian in this treatment of the 6 vertex
model is not that new; in the previous week we saw that the transfer matrix of
the 6-vertex model and the XXZ Hamiltonian commute with each other [1], and
therefore it is not entirely unexpected to find the Hamiltonian in the expansion
of the transfer matrix (recall that (14) implies that t(λ) will commute with every
term in its expansion).

Due to this link between the 2 models we have that the commutation of
transfer matrices in the 6 vertex model, will correspond to commuting higher
Hamiltonians Jn for the XXZ model. Moreover, knowing the eigenvalues of
the transfer matrix will be equivalent to knowing the eigenvalues of the higher
Hamiltonians Jn of the XXZ model.

This relation between the 2 models may appear at first as a coincidence.
However, that is not the case. This is due to a general principle that states the
equivalence between d dimensional classical lattice models (in our case it is the
2-dimensional six vertex model) and a d−1 dimensional quantum lattice model
(in this case the XXZ spin chain) [4].

5 The Braid Group and the Yang Baxter Equa-
tion

We now proceed to make a connection between the braid group and the Yang
Baxter equation. For this we will need to rewrite (10) in a different form.

Recall that we defined R as R : V1⊗ V2 → V1⊗ V2, we will now introduce <
as being defined by:

< = PR (19)

where P stands for the permutation operator. From it’s definition it is clear
that < acts in the following way:

< : V1 ⊗ V2 → V2 ⊗ V1 (20)

e
(1)
i ⊗ e

(2)
j → e

(2)
j ⊗ e

(1)
i (21)

where e
(1)
i and e

(2)
j are basis vectors of V1 and V2 respectively.

Due to the definition of < we also have that it’s components will be related
to the components of R as follows:

<klij = Rlkij (22)
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Using the definition of <, we can rewrite the Yang Baxter equation (10) in
the following way:

(1⊗< (λ)) (< (λ+ λ′)⊗ 1) (1⊗< (λ′)) (23)

= (< (λ′)⊗ 1) (1⊗< (λ+ λ′)) (< (λ)⊗ 1) (24)

On the other hand, the braid group is defined as the group generated by the
elements σi with i ∈ 1, ..., L− 1, satisfying the following properties:

σiσi+1σi = σi+1σiσi+1 (25)

σiσj = σjσi |i− j| ≥ 2 (26)

σiσi
−1 = σi

−1σi = 1 (27)

Figure 7: Graphical interpretation of σi and σi
−1

To understand what this means, we can interpret this graphically by imaging
a set of L vertical lines. The identity element will correspond to leaving these
L vertical lines intact, while we can think of each element of the group σi as
being an over-crossing of the i-th line over the i + 1-th line, while σi

−1 would
correspond to an under-crossing (see Figure 7) .

We will now proceed to illustrate what equations (25), (26) and (27) mean.
Equation (25) is also called the “Braid equation” and its graphically represented
by Figure 8. The equivalence of both sides of the equation can be seen by com-
paring the location of the ends of each string, as well as both sides having the
same structure if the lines were thought of as ropes being stretchered.

Equation (26) means that if i and j are separated enough it doesn’t matter
in which order we apply σi and σj . Meanwhile, equation (27) is graphically rep-
resented by Figure 9, where it is easy to see that σiσ

−1
i and σ−1i σi correspond to

the identity; indeed we observe that by stretching the ropes and comparing the
ends of each line we see that the 2 graphs on the left of Figure 9 are identical
to the identity.

We will now introduce the following operator, which will allow us to make a
connection between the braid group and the Yang-Baxter equation:
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Figure 8: Graphical interpretation of the Braid equation (25)

Figure 9: Graphical interpretation of σiσi
−1 = σi

−1σi = 1

<i (λ) = 1⊗ · · · ⊗ 1⊗

(i,i+1)︷ ︸︸ ︷
< (λ) ⊗1⊗ · · · ⊗ 1 (28)

As we can see in the equation above, <i will act as the identity except on
Vi and Vi+1, where it acts as <(λ).

Using this operator we can write equation (24) in a more general way:

<i+1 (λ)<i (λ+ λ′)<i+1 (λ′) = <i (λ′)<i+1 (λ+ λ′)<i (λ) (29)

Comparing this equation with the Braid equation (25) we see that they have
a similar behavior, except for the fact that here the <i operator has an explicit
dependence on the scaling parameter λ, which is something we do not have on
the Braid equation.
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We also see that the operator <i as defined in equation (28) satisfies that:

<i (λ)<j (λ′) = <j (λ′)<i (λ) |i− j| ≥ 2 (30)

This equation is equivalent to equation (26) of the Braid group.

From this two equations we see that we can construct a representation for
the Braid group, in which the Braid equation is given by the Yang Baxter equa-
tion. However, in order to achieve this it is necessary to remove the dependence
of equation(29) on the scaling parameter λ.

There are 2 solutions to this problem. The first one is to set λ = λ′ = 0,
while the second one is to take λ = λ′ with |λ| = ∞. For the first solution we
have that R(0) = P , and therefore <(0) = PP = 1, this will correspond to the
trivial representation since every element σi of the braid group is represented
by <i(0) = 1.

The second solution is much more interesting and is known as the “Braid
limit”. In order to illustrate how this comes about we will use the following
parametrization:

a (λ) = sinh (λ+ iγ) b (λ) = sinh (λ)

c (λ) = i sin (γ) ∆ = cos (γ)

Using this parametrization one can show that:

lim
λ→±∞

e−|λ|< (λ) ∼ P exp

[
± iγ

2
σz ⊗ σz

]
This equation tells us that <(λ) in the braid limit is proportional to P ,

therefore applying < twice or applying < followed by <−1, will in both cases
produce something proportional to the unity. This is not the behavior we want
in a faithful representation of the braid group, this is because σiσ

−1
i = 1 but

σiσi 6= 1 as can be seen in Figure 10.

We see that using the parametrization introduced above, the Boltzmann
weights behave in the following way when taking λ→∞:

a (λ) ∼ 1

2
eλeiγ b (λ) ∼ 1

2
eλ c (λ) = i sin (γ)

From this we see that a and b scale exponentially with the scaling parame-
ter, while c is fixed. This is a bit unnatural since, as we have seen in previous
lectures, the system is invariant under the overall scaling of all 3 variables.

In order to correct this behavior and with the aim to produce a faithful
representation of the braid group, we now used the trick proposed by Jimbo
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Figure 10: Graphical interpretation of σiσi, the result is clearly not equal to 1

due to the “knot” in the middle

[1][4], in which we rescale the basis vectors of the spaces we are acting on,
namely:

ẽr (λ) = fr (λ) er (λ) r = 1, . . . , L (31)

Recalling that < is an operator that acts in the following way:

<
(
e(λ)r1 ⊗ e

(λ′)
r2

)
= <r2

′r1
′

r1 r2 (λ, λ′) er2′ (λ
′)⊗ er1′ (λ) (32)

we see that for each vector er′(λ), we have that <̃(λ) has to be scaled by a factor
of 1/f ′r(λ).

Taking this into account we have that under the rescaling < transforms into:

<̃r2
′r1
′

r1 r2 (λ, λ′) =
fr1 (λ) fr2 (λ′)

fr1′ (λ) fr2′ (λ
′)
<r2

′r1
′

r1 r2 (λ− λ′) (33)

where the factors of the type fr(λ) found on the numerator correspond to
the rescaling of basis vectors er(λ), which rescale as ẽr (λ) = er/fr (λ) in order
to preserve the normalization of the product between basis vectors.

Previously we have seen that the Yang Baxter equation has in one if its <’s
a dependence on the addition/subtraction of scaling parameters λ and λ′. In
general, we would like this property to be preserved under the rescaling of <.
To do this it is essential to make an adequate choice of the functions fr(λ), in
this case we will use:

fr (λ) = eαλr

Another property that we would like <̃ to preserve is the conservation law
at each vertex. This is equivalent to imposing the following condition:

<̃r2
′r1
′

r1 r2 (λ, λ′) = 0 unless r1 + r2 = r1
′ + r2

′
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Taking these 2 considerations into account, we find that < is rescaled in the
following way:

<̃r2
′r1
′

r1 r2 (λ− λ′, α) = eα(λ−λ′)(r1−r1′)<r2
′r1
′

r1 r2 (λ− λ′) (34)

this expression satisfies the Yang Baxter equation for any α. By convention
we will choose the following normalization for <, which is the one will use for
following presentations in this topic:

< ≡ 2e−iγ/2 lim
λ→∞

e−λ<̃ (λ, α = 1) (35)

Using the R matrix of the 6 vertex model and replacing (34) into (35) we
find the following expression for < in the braid limit:

< =


q1/2 0 0 0

0 0 q−1/2 0
0 q−1/2 q−1/2

(
q − q−1

)
0

0 0 0 q1/2

 (36)

where q = eiγ .

This newly defined < for the braid limit satisfies the property that for γ 6= 0,
<2 6= 1 and therefore it will create a faithful representation of the braid group.
It is also interesting to check that for γ = 0 we have that < = P , but since
< = PR, this will correspond once again to the trivial case.

The inverse of < will be defined as:

<−1 ≡ −2eiγ/2 lim
λ→−∞

eλ< (λ, α = 1) (37)

In summary, what we have done is create a faithful representation of the
braid group by taking the braid limit. In this way the Yang Baxter equation
will be a representation of the braid equation, and for each σi of the braid group
we associate an operator <i:

σ±1i → 1⊗ . . .⊗ 1⊗ <±1︸︷︷︸
(i,i+1)

⊗ . . .⊗ 1 (38)

where the +1 indicates < from equation (36), while the -1 its inverse given
by equation (37).

6 The Yang Baxter Algebra

Finally we introduce a topic that will be used extensively next week. Basically
it is the realization that the Boltzmann weights R and the monodromy matrices
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T constitute and algebra, the so called “Yang Baxter Algebra”, which we will
denote by Y .

In this algebra the different T (λ)
j
i will be the generators of the algebra, while

the Boltzmann weights R will play the role of structure constants. Meanwhile,
the RTT=TTR relation we proved earlier, will play the role of Jacobi identity
of the algebra.

This algebra is called a bi-algebra due to the fact that it has a co-product
defined in the following way:

∆ : Y → Y ⊗ Y

T (λ)
j
i →

∑
k

T (λ)
k
i ⊗T (λ)

j
k

This co-product leaves the Yang Baxter equation invariant.

For the case of the six vertex model we have 4 generators, which we will now
denote as follows:

T (λ)
0
0 =A (λ) T (λ)

0
1 = B (λ)

T (λ)
1
0 =C (λ) T (λ)

1
1 = D (λ)

As always, we can construct the adjoint representation, in which the struc-
ture constants provide a representation of the algebra. This will be given by:(

T (λ)
j
i

)k
l

= R (λ)
jk
il (39)

Using the R matrix for the six vertex model we find the following represen-
tations for the 4 generators of the Yang Baxter algebra:

A (λ) =

[
a (λ) 0

0 b (λ)

]
B (λ) =

[
0 0

c (λ) 0

]
C (λ) =

[
0 c (λ)
0 0

]
D (λ) =

[
b (λ) 0

0 a (λ)

]
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