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We will always assume that our Hilbert spaces are separable.

1. The predual

Let’s fix some notation: if B is a Banach space, then B∗ is the vector space of norm-continuous
linear functionals. This has two possible topologies: the operator norm topology (B)∗n and the
weak-* topology (B)∗w. In general we will look at the latter.

Let A be a von Neumann algebra. The goal of this talk will be naturally associate to a pair
(A,A ↪→ B(H)) a Banach space A∗ such that A = (A∗)∗w, where the former is considered as having
the ultraweak topology as a subspace of B(H).

We claim that A∗ can be given by the space of ultraweakly continuous functionals. We will show
that this is a Banach space and that (A∗)∗w ∼= A. The Banach space A∗ will be called the predual.
To get a better feeling for A∗, let A∗ be the vector space of norm continuous linear functionals
φ : A → C (with induced norm). Because norm convergence implies ultraweak convergence, it
follows that A∗ is a subspace of A∗.

We will reduce the proof to the case that A = B(H) using the following results. Recall that
Hahn-Banach says that if one has a linear functional φ on a subspace of a vector space dominated
by a sublinear functional N (think of it as a norm), then one can extend φ to the entire space in
a way that it is still dominated by N .

Proposition 1.1. If x ∈ B(H) satisfies the φ(x) = 0 for each ultraweakly continuous φ with
φ(A) = 0, then x ∈ A.

Proof. This works for V any ultraweakly closed subspace of B(H). If x /∈ V , then apply Hahn-
Banach or one of its corollaries (e.g. Conway IV.3.15) to the linear functional φ defined by φ(x) = 1
and φ(v) = 0 for all v ∈ V . This is continuous with respect to the restriction of the ultraweak
topology on V + Cx, hence extends to a ultraweakly continuous functional φ on B(H) with the
property that φ(x) = 1. �

We prove the reduction to the case B(H) in the next section. However, we show that the
embedding in B(H) is not essential for the theorem, by given an intrinsic definition of the predual.

Theorem 1.2. Suppose that B(H)uw ∼= (B)∗w. Then Auw ∼= (B/A⊥)∗w and furthermore B/A⊥ can
be identified as a vector space with the subspace A∗ of ultraweakly continuous linear functionals on
A.
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Proof. We first identify Auw with (B/A⊥)∗w. By definition there is an continuous embedding
Auw → B(H)uw = B∗w. Because A is ultraweak closed, it is weak-* closed in B(H) = (B)∗w. This
implies that there is a homeomorphism between the subspace of the norm-continuous functionals
vanishing on A with the subspace topology of the weak-* one, and (B/A⊥)∗w. This can be seen
as follows: the embedding A → (B/A⊥)∗w is clearly continuous, open and injective, and surjective
using the previous proposition.

Next we identify the vectorspace (B/A⊥)∗ with the space of ultraweakly continuous functionals
onA. This means that we must identify the B/A⊥ with the weak-* continuous linear functionalsA∗
in the double dual (B/A⊥)∗∗ = (Auw)∗. See section V.1 of Conway: clearly the elements of B/A⊥
are weak-* continuous considered as elements of (Auw)∗. For the converse, one notes that a weak-*
continous functional is bounded in absolute value by a finite sum of seminorms iv = b 7→ |b(v)| for
v ∈ B/A⊥ and inductively use this to write the functional as a linear combination of the iv’s. �

2. The case B(H): trace-class and Hilbert-Schmidt operators

In this section we will see that the predual of B(H) is given by the Banach space T (H) of
traceclass operators with the trace-norm | − |1.

Definition 2.1. Let a ∈ B(H) and let (ξi) be an orthonormal basis. Then a is said to be of trace
class if the following sum is finite

|a|1 =
∑
i

〈|a|ξi, ξi〉

The set of trace-class operators is denoted by T (H).

To show that this is well-defined, one proves that the sum is independent of the choice of
orthonormal basis.

Lemma 2.2. |a|1 is independent of the choice of orthonormal basis.

Proof. Note that |a| =
√
|a|
√
|a| and write∑
i

〈|a|ξi, ξi〉 =
∑
i

〈
√
|a|ξi,

√
|a|ξi〉

=
∑
i

∑
j

|〈
√
|a|ξi, ηi〉|2

=
∑
j

∑
i

|〈
√
|a|ηi, ξi〉|2

=
∑
j

〈|a|ηj , ηj〉

where we were allowed to interchange the sum because all terms are positive. �

We now discuss several useful properties of the trace-class operators.

Proposition 2.3. T (H) is an ideal which is closed under ∗. The map | − |1 is a complete norm
on T (H) satisfying ||a|| ≤ |a|1, making it into a Banach space. The finite rank operators are dense
and hence T (H) is in fact a sub-ideal of the compact operators K(H).

Proof. To show that it is an ideal in B(H), use that |xa|1 ≤ ||x|||a|1 for x ∈ B(H) and similarly
|ax|1 ≤ ||x|||a|1. That it is closed under ∗ is clear, as |a| = |a∗|.

To show that ||a|| ≤ |a|1 one remarks that ||a|| ≤ ||
√
|a|||2 ≤ |a|1. The first inequality follows

from the functional calculus. For the second inequality, note that ||
√
a||2 = sup||ξ||=1〈|a|ξ, ξ〉 and

hence we pick any ξ of norm 1 for which this supremum is almost obtained as the first vector of
an orthonormal basis to bound |a|1 ≥ ||

√
|a|||2 − ε for all ε > 0. Taking ε to zero then proves the

statement.
To show that | − |1 is a complete norm, one notes that if an is | − |1-Cauchy, it is || − ||-Cauchy

to get a candidate a. We need to show that a is trace-class and |a−an|1 → 0. However, the second
statement implies the first since |a|1 ≤ |an|1 + |a−an|1. So let’s prove the second: if ||a−an|| → 0,
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then in particular |am − an|ξi → |a − an|ξi for all vectors ξi of length 1. This implies that if
|am − an|1 =

∑
〈|am − an|ξi, ξi〉 ≤ ε for m,n large enough, then |a− an|1 ≤ ε as well.

Finally, note that any a ∈ T (H) is the | − |1-limit of apn, where pn is the projection on the first
n basis vectors ξi for 1 ≤ i ≤ n. All apn are of finite rank, hence these are dense. Because | − |1
dominates ||− ||, T (H) lies in the norm-closure of the finite-rank operators, which are the compact
operators. �

Next we define the trace.

Lemma 2.4. If a is a trace-class operator, then the following sum converges absolutely

Tr(a) =
∑
i

〈aξi, ξi〉

It satisfies Tr(a) ≤ |a|1 and Tr(xa) ≤ ||x||Tr(a) for each x ∈ B(H).

Proof. It suffices to prove the second statement. We will only prove the first part, as the second
is then easy. To prove this, write a = u

√
|a|
√
|a| using the polar decomposition and consider the

following:

0 ≤ ||(
√
|a| − λ

√
|a|u∗)ξi||2

= ||
√
|a|ξi||2 − 2Re

(
λ〈
√
|a|ξi,

√
|a|u∗ξi〉

)
+ |λ|2||

√
|a|u∗ξi||2

= 〈|a|ξi, ξi〉 − 2Re (λ〈aξi, ξi〉) + |λ|2〈|a|u∗ξi, u∗ξi〉

Now write λ = eiφ, where the phase is chosen such that Re
(
eiφ〈aξi, ξi〉

)
= |〈aξi, ξi〉|. Then we

get:

2|〈aξi, ξi〉| ≤ 〈|a|ξi, ξi〉+ 〈|a|u∗ξi, u∗ξi〉
Now note that the sequences (ξi) and (uξi) both orthonormal bases. Thus summing over i we

obtain

Tr(a) ≤ |a|1
�

We will now prove that there is an isomorphism of Banach spaces between T (H)∗ with the
operator norm topology and B(H) with the norm topology. An important role will be played by
the map φ : B(H)→ T (H)∗ given by

φx(a) = Tr(xa)

Theorem 2.5. We have that (T (H))∗n
∼= B(H)n.

Proof. By the previous proposition, we know that each φx is norm continuous. Thus, only the
following statement is left: if λ : T (H) → C is a linear functional which is bounded with respect
to | − |1 then there is a x ∈ B(H) such that λ(a) = φx(a) and ||λ|| = ||x||.

Note that we have a sesquilinear form on B(H):

〈ξ, η〉λ = λ(v 7→ 〈v, ξ〉η)

By Riesz representability, 〈ξ, η〉λ = 〈xξ, η〉 for some x ∈ B(H) with

||x|| = sup
||ξ||=||η||=1

|〈ξ, η〉λ| = sup
||ξ||=||η||=1

|λ(v 7→ 〈v, ξ〉η)| = ||λ||

where only the last equality is not obvious. Clearly the left hand side is less than or equal to
the right hand side, because we should evaluate on more trace-class operators to get the usual
definition. However, because |λ(−)| is continuous it suffices to check it on the dense subspace of
finite rank operators. Linearity then implies we can restrict to trace-class operators of the form
v 7→ 〈v, ξ〉η if we want to show that the left hand side is greater than or equal to the right hand
side.

To show that λ(h) = φx(h), it suffices to note that both are continuous with respect to | − |1
and coincide on finite rank operators, thus must be equal. �
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Of course, we are more interested in the weak-* and ultraweak topologies. We claim that the
same statement holds with these.

To prove this we will need to introduce the Hilbert-Schmidt operators. The idea is that every
trace-class operator splits as a product of Hilbert-Schmidt operators and Hilbert-Schmidt operators
sends an orthonormal basis to a `2-convergent sequence of vectors, hence allowing us to make the
connection with the ultraweak topology. One should think of a Hilbert-Schmidt operator as a
square root of a trace-class operator.

Definition 2.6. A bounded operator b ∈ B(H) is said to be Hilbert-Schmidt if b∗b is trace-class.
We let HS(H) denote the set of Hilbert-Schmidt operators.

We will need the following lemma’s, which are elementary, but very useful for calculations.

Lemma 2.7. Every trace-class operator is Hilbert-Schmidt and in fact every trace-class operator
is a product of two Hilbert-Schmidt operators. Every `2-convergent sequence (ηi) of vectors is the
image of a basis (ξi) under a Hilbert-Schmidt operator.

Proof. If a is a trace-class operator, then a∗a is trace-class as well, because T (H) is an ideal.
Let a = u|a| be the polar decomposition of a trace-class operator. Then a can be written as the

product of trace-class operators u
√
|a| and

√
|a|.

For the second assertion, note that
∑
i〈−, ξi〉ηi is a Hilbert-Schmidt operator. �

Lemma 2.8. For b, c ∈ HS(H), bc ∈ T (H) and Tr(bc) = Tr(cb).

Proof. For the first statement, we note that in our proof that the trace is well-defined, we have
shown that Tr(bc) ≤

∑
i ||bξi||2 + ||cξi||2. It is easy to check that b ∈ HS(H) is equivalent to∑

i ||bξi||2 <∞.

The second statement one proves that | − |2 given by |b|2 =
√∑

i ||bξi||2 is a complete norm for
the Hilbert-Schmidt operators such that the finite-rank operators are dense and Tr is continuous
in both components. The equation then follows by continuity from the corresponding equation for
finite-rank operators, where it is the usual invariance under cyclic permutation of the trace of a
matrix. �

We can now prove the result about the ultraweak topology on B(H) and the weak-* topology
on T (H).

Theorem 2.9. We have that (T (H))∗w
∼= B(H)uw.

Proof. The only thing that is left to do is prove that ultraweak topology on B(H) comes from
the seminorms x 7→ |Tr(xa)| for a ∈ T (H). The ultraweak topology is obtained by looking at
seminorms | − |ξ,η for sequences (ξi), (ηi) ∈ `2(H) given by

| − |ξ,η =

∞∑
i=1

|〈xξi, ηi〉|

To relate this to the seminorm |x|h = |Tr(xh)| = |
∑∞
i=1〈xhζi, ζi〉| with (ζi)i an orthonormal

basis. We note that h = h1h
∗
2 for h1, h2 Hilbert-Schmidt operators. Then we have that Tr(xh1h

∗
2) =

Tr(h∗2xh1). Send h2 to the other side of the inner product and note that both elements (ξi), (ηi) ∈
`2(H) can be obtained by applying a Hilbert-Schmidt operator to the fixed set of orthonormal
vectors (ζi)i. By including appropriate phases, we can also get the absolute values. �

Finally, we show that T (H) can be identified with the ultraweakly continuous functionals on
B(H). To do, we take the transpose of φ. This is a map ψ : T (H) → B(H)∗ given by ψa(x) =
Tr(xa), where the latter has the operator norm topology. We will show that the image of this map
is the space of functionals which are ultraweakly continuous in addition to being norm continuous.

Theorem 2.10. Each ψa is ultraweakly continuous and the map a 7→ ψa is continuous. To be
precise, ||ψa|| = |a|1.

Conversely, if ω is an ultraweakly continuous linear functional on B(H), then there is a trace-
class operator a such that ω = ψa and ||ω|| = |a|1.
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Proof. For the statement about ultraweak continuity, use statement that a functional ω is ultra-
weakly continuous if and only if it is of the form

ω(x) =
∑
i

〈xξi, η〉

for (ξi), (ηi) `
2-convergent sequences of vectors. By the same reasoning as in the previous theorem,

this exactly means that ω of the form Tr(a).
To prove that ||ψa|| = |a|1, we use that because |a| is compact and positive, there exists a

orthonormal basis ξi of H consisting of eigenvectors for |a| with eigenvalues λi ≥ 0. A simple
estimate shows using this basis shows that ψa(x) ≤ ||x|||a|1 and entering x = u∗ for the polar
decomposition a = u|a| shows equality.

For the converse statement one uses similar reasoning as in the proposition. If ω is ultraweakly
continuous then it can be written as ω(x) = Tr(a∗2xa1) for a1, a2 ∈ HS(H). Use the cyclic property
of the trace to show that ω(x) = ψa1a2(x). �

The conclusion is that T (H) is the norm topology from | − |1 is isometrically isomorphic to
the subspace of B(H)∗ of the ultraweakly continuous functionals with the subspace topology from
the operator norm topology. Furthermore, the weak-* topology on B(H) is exactly the ultraweak
topology.

3. Standard forms for II1 factors

A is a type II1 factor if it is an infinite dimensional factor and has a ultraweakly continuous
trace tr, i.e. tr(ab) = tr(ba) and tr(a∗a) ≤ 0. There is a unique normalized trace: tr(1) = 1.

We want to apply the GNS-construction to this. To do this, one lets L2(A, tr) be the Hilbert
space completion of the vector space given by A/{a ∈ A|tr(a∗a) = 0} with inner product induced
by a, b 7→ tr(b∗a).

The action of A on L2(A, tr) induced by multiplication in the algebra turns out to be continuous
and is called the standard form of A.

To link with the previous section, we note that there exist spaces Lp(A, tr) for p ∈ [1,∞] with
norms induced by tr(| − |p)1/p. If p = ∞, one obtain A, for p = 1, one gets the predual A∗. So,
one should think of L2(A, tr) as the Hilbert-Schmidt operators associated to the predual A∗.


