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All of the things discussed in this note can be found in Jones’ article [1] and the book Jones
and Sunde [2].

1. Subfactors of type II1 factors and their index

In this section we define subfactors and use the coupling constant to define a numerical invariant
of subfactors. The construction will be similar to that of subgroups and their index.

1.1. Subfactors. We will be working with type II1 factors. These are von Neumann-algebras with
a positive normalised trace tr : M → C:

Positive: tr(x∗x) ≥ 0 for all x ∈M .
Normalised: tr(1) = 1.
Tracial: tr(xy) = tr(yx) for all x, y ∈M .

It is a fact that this trace is then unique, and additionally it is faithful and normal.

Normal: For every increasing net of positive elements {ai} we have tr(
∨
i ai) = lim sup tr(ai).

It is equivalent to tr being ultraweakly continuous.
Uniqueness: The map tr is unique. The map tr is determined by its values on projections

and uniqueness for matrix algebras shows that it is uniquely determined on projections
corresponding to Q∩ [0, 1] ⊂ [0, 1]. Now apply normality for the projections corresponding
to irrational numbers.

Faithful: If tr(x∗x) = 0 then x = 0. The proof is given by showing that this is an ideal and
there is a central projection onto it. This projection must be zero because tr is non-zero
(hence the ideal is proper) and M is a factor (hence there are no non-zero proper ideals).

This trace allows us to construct the standard form of M : a Hilbert space L2(M) such that the
action for M has a cyclic and seperating vector. It is given by the completion of M with respect to
the inner product 〈x, y〉 = tr(y∗x). There is a linear map M → L2(M) and we denote the image

of x ∈M by x̂. The image 1̂ of 1 ∈M is the cyclic seperating vector and will denoted Ω.
We will need some of these properties later, but the actual definition of a subfactor doesn’t

require them.

Definition 1.1. A subfactor N of M is a unital inclusion N ⊂M of type II1 factors. Here unital
means that N contains the unit of M .
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A simple example of a subfactor is the inclusion M2(R) → M4(R) (every matrix algebra is a
factor as in the Artin-Wedderburn theorem) given by:

(
a b
c d

)
7→


a b 0 0
c d 0 0
0 0 a b
0 0 c d


In other words, a subfactor is nothing but a subalgebra which is a factor itself. Note that because

subfactors have no non-trivial ideals, any map of von Neumann-algebras between subfactors is an
inclusion. In this sense, factors are somewhat like non-commutative fields and subfactors like
subfields.

1.2. The index of a subfactor. Recall that we have seen a bit of the theory of the coupling
constant dimM (H) of a module H over a type II1 factor M . This has properties which make it
analogous to the dimension of H over M , although this dimension can be any positive real.

The coupling constant, a number in [0,∞] associated to a M -module H, was defined as follows:
if H is a M -module then up to equivalence there is a unique projection p ∈ M ⊗ B(`2(N )) such
that H is isomorphic to H ⊗ `2(N )p as a M -module. We define the coupling constant to be the
trace of this projection: dimM H = tr(p).

By noting that M ⊗ B(`2(N )) is of type II∞ which has projections of all traces in [0,∞] and
taking H = L2(M)⊗`2(N )q for a projection q of trace d ∈ [0,∞], we see that the coupling constant
attains all values in [0,∞] for all M .

We list the properties of the coupling constant here:

Proposition 1.2. The coupling constant dimM (−) satisfies the following properties:

Normalisation: dimM (L2(M)) = 1.
Faithful: If dimM (H) = dimM (K) then H and K are unitarily equivalent.
Addivity: If {Hi} is a countable collection of M -modules, then dimM (

⊕
iHi) =

∑
i dimM (Hi).

Multiplicativity: If K is any Hilbert space and M acts on H⊗K by tensoring the original
action with the identity, then dimM (H⊗K) = dimM (H) dimC(K).

Compatibility with projections: For p a projection in M , we have that dimM (Hp) =
tr(p) and dimpMp(pH) = tr(p)−1 dimM (H).

If dimM (H) < ∞, then M ′ (relative to H) is again type II1. The following properties hold if
M ′ is a type II1 factor1:

Commutant: We have dimM ′(H) <∞ and dimM ′(H) = (dimM (H))−1.
Projections of commutant: For p a projection of M ′, we have that dimMp(pH) = trM ′(p) dimM (H).

Using the coupling constant and the standard form L2(M) we can define the index of N . To do
this, note that the inclusion N ↪→M endows L2(M) with the structure of an N -module.

Definition 1.3. The index [M : N ] of N in M is defined to be dimN (L2(M)).

The properties of the coupling constant imply several properties of the index.

Proposition 1.4. The index has the following properties. Let N ⊂ P ⊂ M be a sequence of
subfactors.

Normalisation: [M : M ] = 1.
Positivity: [M : N ] ≥ 1 and [M : N ] ≥ [M : P ].
Tower rule: [M : N ] = [M : P ][P : N ].
Faithful: [M : P ] = [M : Q] implies P ∼= Q.
Multiplicativity: [M1 ⊗M2 : N1 ⊗N2] = [M1 : N1][M2 : N2].
Commutant: If N ′ is a II1 factor (relative to L2(M)) then [M : N ] = [N ′ : M ′].

1In fact, the commutant M ′ can only be a type II1 or II∞ factor.
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Proof. A very useful tool is the fact that we can also calculate the index using other modules that
L2(M). Let H be any M -module of finite non-zero dimension. Then we claim that

[M : N ] =
dimN (H)

dimM (H)

For a proof, see [2, proposition 2.3.5], but the idea is to use the faithfulness of the coupling
constant to pick a nice isomorphic M -module H′ for H and do the calculations with that.

Normalisation: We have [M : M ] = 1 because the coupling constant satisfies dimM (L2(M)) =
1.

Positivity: We do the first statement, then the second part is a consequence of this and
the tower rule. If the index is infinite, we are done and hence we can assume it is finite.
Because the index is finite, it follows that dimN (L2(M)) is finite and hence N ′ is type II1.
Note that the projection q onto N is an element of N ′ factor. This means that

1 = dimN (L2(N)) = dimNq(qL
2(M)) = trN ′(q) dimN (L2(M)) ≤ dimN (L2(M))

where we have used the compatibility of the coupling constant with projections in the
commutant (when the commutant is type II1) and the fact that all non-zero projections of
a type II1 factor have trace in (0, 1].

Tower rule: For the tower rule, we will use that we can use any module of finite dimension
to compute the index. We have that:

[M : P ] = dimP (L2(M)) = dimN (L2(M))
dimP (L2(M))

dimN (L2(M))
= [M : N ][N : P ]

Faithful: We do not need this, so we will not prove it.
Multiplicativity: We also do not need this.
Commutant: This is a direct consequence of the commutant formula of the coupling con-

stant:

[M : N ] =
dimN (L2(N ′))

dimM (L2(N ′))
=

dimM ′(L2(N ′))

dimN ′(L2(N ′))
= dimM ′(L2(N ′)) = [N ′ : M ′]

Because we can use any finite dimensional module, this formula in fact holds for taking
the commutant with respect to any H such that P ′ is type II1.

�

2. The basic construction and the tower

In this section we will use the standard form to construct a tower of type II1 factors associated
to a subfactor N ⊂M . To investigate its properties we will use the index. We start with a single
step of the tower, known as the basic construction.

2.1. The basic construction. The idea of the basic construction is as follows: starting with a
subfactor N ⊂M , we add the projection eN onto N to M to get a subfactor M ⊂ 〈M, eN 〉, where
the latter is the von Neumann-algebra generated by M and eN in B(L2(M)).

We begin by considering the linear projection eN : L2(M) → L2(N) which exists because
L2(N) is a closed subspace. It is a bounded linear map which commutes with everything that
commutes with N and hence maps MΩ to NΩ. Because Ω is seperating, we thus have an induced
operation EN : M → N defined by eNxΩ = EN (x)Ω for all x ∈ M . The map EN is called the
conditional expectation of M onto N . Alternatively, one can characterize EN by the property
tr(EN (m)n) = tr(mn) for m ∈ M , n ∈ N such that all traces are defined. However, with this
definition it is less clear that such a map actually exists.

For convenience, we will write e = eN and E = EN , only to use the subscripts in situation
where there are several subfactors floating around.

Lemma 2.1. The map E satisfies the following properties:

(1) Je = eJ and E(m)∗ = E(m∗) for all m ∈M .
(2) E(n1mn2) = n1E(m)n2 for all m ∈M , n1, n2 ∈ N .
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(3) For all m ∈M we have an equality eme = E(m)e as operators on L2(M).
(4) tr ◦ E = tr.

Proof. (1) It suffices to prove the first statement on the dense subspace MΩ. We have that
emΩ is equal to the limit mΩ − nαΩ where nα ∈ N is a sequence such that the limit of
the distances is the infimum of all distances from mΩ to points in L2(N). Taking the ∗
preserves gives a sequence with this property for m∗Ω and hence J(emΩ) = eJ(mΩ). The
second statement is a direct consequence of the first:

E(m)∗Ω = J(E(m)Ω) = J(emΩ) = eJ(mΩ) = em∗Ω = E(m∗)Ω

(2) We first note that e commutes with elements of N . This is because e|NΩ is by definition
the identity and in particular we have that e(Ω) = Ω because the unit of N is the unit of
M . This implies that

E(n1x)Ω = en1xΩ = n1exΩ = n1E(x)Ω

which implies E(n1x) = n1E(x).
For the general case, it now suffices to show E(mn2) = E(m)n2. To prove this, we use

the J . Because J is bijective, it suffices to prove that two vectors are equal after applying
J . Let’s apply J to E(mn2)Ω:

J(E(mn2)Ω) = J(emn2Ω) = eJ(mn2ω) = en∗2m
∗Ω = n∗2em

∗Ω

= n∗2E(m)∗Ω = J(E(m)n2Ω)

(3) It suffices to prove eme = E(m)e on the dense subspace MΩ. In this case e maps MΩ
surjectively onto NΩ, so it suffices to show that emnΩ = E(m)nΩ. But this is easy: the
former is by definition E(mn) and this is equal to the latter by the second property we
have proven.

(4) We have that tr(E(m)) = 〈E(m)Ω,Ω〉. The latter is equal to 〈emΩ,Ω〉. Since e is a
bounded and a projection, it has an adjoint and is equal to its adjoint. So we can write
〈mΩ, eΩ〉. But N is unital, so eΩ = Ω. Thus we get 〈mΩ,Ω〉 = tr(m).

�

We now do the basic construction and then discuss some of its properties.

Definition 2.2. 〈M, eN 〉 is the von Neumann algebra generated by M and eN , i.e. it is given by
(M ∪ {eN})′′. This is called the basic construction.

Proposition 2.3. The basic construction has the following properties:

(1) 〈M, eN 〉 = JN ′J where N ′ is taken with respect to L2(M).
(2) 〈M, eN 〉 is a factor if N is.
(3) Furthermore 〈M, eN 〉 is a factor of type II1 if [M : N ] <∞.

For the following properties we will assume that [M : N ] <∞.

(4) M is a subfactor of 〈M, eN 〉 with index [〈M, eN 〉 : M ] = [M : N ].
(5) The canonical trace t̃r of 〈M, eN 〉 extends the canonical traces of N and M . It satisfies

the Markov property

t̃r(xeN ) = [M : N ]−1tr(x)

for all x ∈M and in particular we therefore have t̃r(eN ) = [M : N ]−1.

Proof. (1) We first prove that N ′ = (M ′ ∪ {eN})′′. For this it suffices to prove that N =
(M ′ ∪ {eN})′. But if x ∈ (M ′ ∪ {eN})′ in particular x ∈ M ′′ and hence x ∈ M . If x ∈ M
commutes with eN , then x = EN (x) and we conclude that x ∈ N .

Now it suffices to note that

JN ′J = J(M ′ ∪ {eN})′′J = (JM ′J ∪ {JeNJ})′′ = (M ∪ {eN})′′
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(2) We have that N ⊂ 〈M, eN 〉 and we claim that x ∈ 〈M, eN 〉 commutes with eN if and only
if x ∈ N ⊂M . Then the claim is clear, because it implies that

〈M, eN 〉′ ∩ 〈M, eN 〉 = N ∩ 〈M, eN 〉′ ⊂ N ∩N ′ = C

To prove this, we note that x 7→ xeN is an isomorphism of N onto eN 〈M, eN 〉eN . It is
surjective because 〈M, eN 〉 is the weak closure of a0 +

∑
i aieNbi for ai, bi ∈M and clearly

eNaieNbieN ∈ NeN by the previous proposition. If xeN = 0 then xeNΩ = xΩ = 0 implies
x = 0 because Ω is seperating, so it is also injective.

(3) If dimN (L2(M)) = [M : N ] < ∞, then we know that N ′ (with respect to L2(M)) is of
type II1. Because 〈M, eN 〉 = JN ′J , this implies that it is of type II1 as well.

(4) Clearly the inclusion of M in 〈M, eN 〉 is unital and hence M is a subfactor. For the index
we have

[〈M, eN 〉 : M ] = [M ′ : (〈M, eN 〉)′]

=
dim(〈M,eN 〉)′(L

2(M))

dimM ′(L2(M))

= dimJNJ(L2(M))

= dimN (L2(M))

= [M : N ]

where we have used that we pick any module of finite dimension to compute the index, in
this case L2(M), that dimM ′(L2(M)) = (dimM (L2(M)))−1 = 1 and that the commutant
of 〈M, en〉 with respect to L2(M) is JNJ , whose action on L2(M) is isomorphic to the
opposite action of N , which gives the same dimension.

(5) Because it is of type II1, there exists a canonical trace t̃r on 〈M, eN 〉. Because N ⊂M ⊂
〈M, eN 〉 and normalized traces are unique on type II1 factors, the trace t̃r extends both
the trace of N and M .

We can consider the trace t̃r(neN ) on N and because N is a factor we must have that
this is Ctr(n). By definition of the dimension t̄r(eN ) = [M : N ]−1 for the trace t̄r on N ′

hence t̃r(eN ) = [M : N ]−1 as well and we obtain C = [M : N ]−1. Finally for the Markov
property in general:

t̃r(meN ) = t̃r(meNeN ) = t̃r(eNmeN ) = t̃r(EN (m)eN )

= [M : N ]−1tr(EN (m)) = [M : N ]−1tr(m)

�

2.2. The tower. The trick is now to look at the input and output of the basic construction. The
input was:

• A subfactor N ⊂M of type II1 factors with finite index τ−1 = [M : N ].

The output was:

• A subfactor M ⊂ 〈M, eN 〉 of type II1 factors with finite index τ−1 = [M : N ].
This has the additional property that trace of 〈M, eN 〉 satisfies the Markov property

tr〈M,eN 〉(meN ) = τtrM (m) for all m ∈M .

This means that we can iterate the construction.

Definition 2.4. Iterate the basic construction of M−1 = N , M0 = M to get M1 = 〈M, eN 〉 etc.
Set τ−1 = [M : N ]. We obtain a tower of subfactors

M−1 ⊂M0 ⊂M1 ⊂M2 ⊂ . . .

such that each von Neumann-algebra is a type II1 factor which has index τ−1 in the next one. Each
algebra Mn contains n distuingished elements e1, . . . , en and these satisfy trn(xen) = τtrn−1(x)
for all x ∈Mn−1.

We will say a bit more about the elements ei for later purpose.
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Proposition 2.5. The ei satisfy the following relations:

• e2
i = ei.

• enem = emen if |m− n| > 1.
• en+1enen+1 = τen+1.
• enen+1en = τen.

Proof. • This is clear as ei is a projection.
• This is a consequence of the fact that in the basic construction eN ∈ N ′ which here

translates to en ∈M ′n−2.
• This is a consequence of the fact that in the basic construction we have eNmeN =
EN (m)eN . This translates to en+1xen+1 = En+1(x)en+1 for x ∈ Mn. We have that
En+1(en) = τen+1, because both are projections and have the same trace.
• We have that u = τ−1/2enen+1 is a partial isometry such that u∗u = en using the previous

property and clearly uu∗ ≤ en. Taking traces in the inequality, we get an equality and
hence in fact uu∗ = en. But uu∗ = τ−1enen+1en, proving the second property

�

3. Possible values for the index

This index has some remarkable properties. For example, if one look at all numbers that can
appear as an index in any M , it turns out that this set is given by

A = {4 cos2(π/n)|n ∈ {3, 4, . . .}} ∪ [0,∞]

This set is in fact obtained for M a hyperfinite type II1 factor. A II1 factor is hyperfinite if
there is a sequence of finite-dimensional subalgebras whose union is weakly dense, e.g. RΣn in the
von Neumann-algebra associated to the group algebra RΣ∞. A side remark: all hyperfinite type
II1 factors are isomorphic.

It is easy to describe the construction of subfactors for the part {4 cos2(π/n)|n ∈ {3, 4, . . .}}
of A. These can be constructed from finite-dimensional C∗-algebras. In special cases, the index
can be computed by the inclusion matrix describing the Bratteli diagram. If the matrix is Λ, then
the index is ||Λ||2. Finite-dimensional matrices with non-negative integral entries are in bijection
with finite bipartite graphs and those matrices with norm ≤ 2 can be classified with a A-D-E
classification. In particular, picking Am−1 gives ||Λ|| = 2 cos(π/m). Note that applying the tower
construction to these gives a hyperfinite M∞ =

⋃
Mn and taking “M∞−1” as a subfactor of M∞

one obtains a subfactor of a hyperfinite type II1 factor.
Kronecker in fact proves that we always have ||Λ||2 ∈ A. I do not know whether also the part

[4,∞] ∈ A can be obtained from a finite-dimensional pair.

4. Temperley-Lieb algebras and knot invariants

Finally, we will describe the relation between the tower of a subfactor and Temperley-Lieb
algebras. We will then relate this to knot invariants, in particular the Jones polynomial. This is a
very interesting topic and unfortunately I won’t have much time to talk about it. Maybe we could
do a talk about planar algebras and the classification of subfactors at some point.

Fixing a ring R and an element β ∈ R, one can define the Temperley-Lieb algebras Tn(β) for
all n ≥ 2. There are natural inclusions Tn(β) ↪→ Tn+1(β) and T∞(β) = limn Tn(β).

Definition 4.1. Let Tn(β) be the algebra over R generated by elements U1, . . . , Un−1, subject to
the following relations:

• U2
i = βUi.

• UiUi−1Ui = Ui and UiUi+1Ui = Ui
• UiUj = UjUi if |i− j| ≥ 2.

There is an alternative definition in the literature, which is equivalent if τ is invertible and
admits a square root:
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Definition 4.2. Let T̃n(τ) be the algebra over R generated by elements V1, . . . , Vn−1, subject to
the following relations:

• V 2
i = Vi.

• ViVi−1Vi = τVi and ViVi+1Vi = τVi
• ViVj = VjVi if |i− j| ≥ 2.

The algebra T̃n(τ) is isomorphic to Tn(β) with β = τ−1/2 by sending Vi to τ1/2Ui. It is more
suited to dealing with subfactors, because the relations in this alternative definition are closer to
the relations one gets in the tower.

The relation with knots is made through braids. There is a well-known presentation of the braid
group given as follows:

Definition 4.3. The braid group on n strands Bn is generated by elements σ1, . . . , σn−1 subject
to the relations:

• σiσi+1σi = σi+1σiσi+1,
• σiσj = σjσi if |i− j| ≥ 2.

We claim that under certain mild conditions a Temperley-Lieb algebra T̃n(τ) gives one a repre-
sentation of the braid group Bn.

Proposition 4.4. If q is invertible, has a square root and satisfies q + q−1 + 2 = τ−1, then the
following map gives a representation Bn in T̃n(τ):

π : σi 7→ q1/2((q + 1)Vi − 1)

Proof. Let’s try sending σi to a(bVi− 1). We will find that there are certain conditions on a, b ∈ R
such that this gives a representation of the braid group. The only thing we need to do is to make
the two relations of the braid group hold. The second always holds because in a Temperley-Lieb
algebra ViVj = VjVi if |i− j| ≥ 2. So let’s look at the first relation:

π(σi)π(σi+1)π(σi) = a3(b3ViVi+1Vi − b2(V 2
i + ViVi+1 + Vi+1Vi) + b(2Vi + Vi+1)− 1)

Using the relations of a Temperley-Lieb algebra, this simplifies to

a3(−b2(ViVi+1 + Vi+1Vi) + (2b− b2 + b3τ)Vi + bVi+1 − 1)

This should be equal to π(σi+1)π(σi)π(σi+1), which by symmetry is equal to:

a3(−b2(Vi+1Vi + ViVi+1) + (2b− b2 + b3τ)Vi+1 + bVi − 1)

So the only condition we derive from this is that we must have that b satisfies 2b− b2 + b3τ = b
or equivalently that 1 − b + b2τ = 0. If we write b = q + 1, this equation is equivalent to
−q + (q + 1)2τ = 0, which can be rewritten as

q + q−1 + 2 = τ−1

Our choice of a is unconstrained, except that the a should be invertible. This holds for a = q1/2,
which will turn out to be a useful choice of normalization later on. �

Representations of braids can given invariants of knots. The idea is that a braid can be closed
to give a knot. If b ∈ Bn is a braid we denote this knot by b(n). Then Markov and Alexander have
proven the following theorem:

Theorem 4.5. Every knot is obtained as the closure of a braid and two braids give the same knot
if and only if they are related by a finite sequence of the following two moves:

• Replace cbc−1 by b in Bn or vice versa.

• Replace b(n) by b(n+1)(σ
(n+1)
n )±1 or vice versa.

Thus, we get a knot invariant if we find a set of functions fn : Bn → X which are constant on

conjugacy classes and satisfy fn(b(n)) = fn+1(b(n+1)(σ
(n+1)
n )±1).

The first condition is automatically satisfied if we take the trace of a representation of Bn. We
say that a series of Temperley-Lieb algebras T̃n(τ) has a set of compatible traces trn : T̃n(τ)→ R
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if we have traces satisfy the equations trn(xVn) = τtrn−1(x) for x ∈ T̃n−1(τ). This induces a trace

on T̃∞(τ).

Proposition 4.6. If we have a series of Temperley-Lieb algebras with compatibles traces, then the
functions fn : Bn → R given by

fn(b) = (−(q1/2 + q−1/2))n−1trn(πn(b))

are constant on conjugacy classes and satisfy fn(b(n)) = fn+1(b(n+1)(σ
(n+1)
n )±1), hence give in-

variants of knots.

Proof. That the fn are constant on conjugacy classes is a simply consequence of the properties of
a trace. The second property is simply a matter of checking, using the compatibility of the traces
tr + n and trn+1. �

The reason for picking a = q1/2 is to make the formula for the fn as symmetric as possible.

Corollary 4.7. If N ⊂ M is a subfactor of type II1 factors of finite index, then the tower . . . ↪→
Mi ↪→Mi+1 ↪→ . . . gives one an algebra

⋃
Mi which contains the subalgebra generated by e1, e2, . . ..

This subalgebra is a Temperley-Lieb algebra for τ = [M : N ]−1 with trace coming from a series of
compatible traces. Hence we obtain an invariant of knots.

In fact, one can try to see q as a formal parameter. The result is the so-called Jones polynomial,
a powerful invariant of knots which can detect chirality. In fact, one can derive a simple algorithm
to calculate these invariants using Skein relations and nowadays the Jones polynomial is usually
defined using this algorithm.

References

[1] Jones, V., Index for subfactors.

[2] Jones, V. & Sunder, V.S., Introduction to subfactors, LMS Lecture Note Series 234.


